Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;49(12):5581-92.
doi: 10.1167/iovs.07-1032.

Effect of IL-1beta on survival and energy metabolism of R28 and RGC-5 retinal neurons

Affiliations

Effect of IL-1beta on survival and energy metabolism of R28 and RGC-5 retinal neurons

Steve F Abcouwer et al. Invest Ophthalmol Vis Sci. 2008 Dec.

Abstract

Purpose: Interleukin-(IL)1beta expression is increased in the retina during a variety of diseases involving the death of retinal neurons and contributes to neurodegenerative processes through an unknown mechanism. This study was conducted to examine the effects of IL-1beta on the metabolism and viability of RGC-5 and R28 retinal neuronal cells.

Methods: Cellular reductive capacity was evaluated using WST-1 tetrazolium salt. Mitochondrial transmembrane potential was determined by JC-1 fluorescence. Cellular ATP levels were measured with a luciferase assay. Caspase-3/7 activation was detected with a DEVDase activity assay. Cell death and lysis was evaluated by measuring release of lactate dehydrogenase (LDH). Glycolysis was assessed by measuring glucose disappearance and lactate appearance in cell culture medium. Cellular respiration was followed polarographically.

Results: IL-1beta treatment caused a pronounced decrease in cellular reductive potential. IL-1beta caused depletion of intracellular ATP, loss of mitochondrial transmembrane potential, caspase-3/7 activation, and LDH release. IL-1beta treatment increased rates of glucose utilization and lactate production. The cells were partially protected from IL-1beta toxicity by ample ambient glucose. However, glucose did not block the ability of IL-1beta to cause a decline in mitochondrial transmembrane potential or ATP depletion. IL-1beta decreased oxygen consumption of the R28 cells by nearly half, but did not lower cytochrome c oxidase activity.

Conclusions: The present results suggest that IL-1beta inhibits mitochondrial energy metabolism of these retinal neuronlike cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources