Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov 28:7:247.
doi: 10.1186/1475-2875-7-247.

Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe

Affiliations

Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe

Givemore Munhenga et al. Malar J. .

Abstract

Background: Insecticide resistance can present a major obstacle to malaria control programmes. Following the recent detection of DDT resistance in Anopheles arabiensis in Gokwe, Zimbabwe, the underlying resistance mechanisms in this population were studied.

Methods: Standard WHO bioassays, using 0.75% permethrin, 4% DDT, 5% malathion, 0.1% bendiocarb and 4% dieldrin were performed on wild-collected adult anopheline mosquitoes and F1 progeny of An. arabiensis reared from wild-caught females. Molecular techniques were used for species identification as well as to identify knockdown resistance (kdr) and ace-1 mutations in individual mosquitoes. Biochemical assays were used to determine the relative levels of detoxifying enzyme systems including non-specific esterases, monooxygenases and glutathione-S-transferases as well as to detect the presence of an altered acetylcholine esterase (AChE).

Results: Anopheles arabiensis was the predominant member of the Anopheles gambiae complex. Of the 436 An. arabiensis females, 0.5% were positive for Plasmodium falciparum infection. WHO diagnostic tests on wild populations showed resistance to the pyrethroid insecticide permethrin at a mean mortality of 47% during February 2006 and a mean mortality of 68.2% in January 2008. DDT resistance (68.4% mean mortality) was present in February 2006; however, two years later the mean mortality was 96%. Insecticide susceptibility tests on F1 An. arabiensis families reared from material from two separate collections showed an average mean mortality of 87% (n = 758) after exposure to 4% DDT and 65% (n = 587) after exposure to 0.75% permethrin. Eight families were resistant to both DDT and permethrin. Biochemical analysis of F1 families reared from collections done in 2006 revealed high activity levels of monooxygenase (48.5% of families tested, n = 33, p < 0.05), glutathione S-transferase (25.8% of families tested, n = 31, p < 0.05) and general esterase activity compared to a reference susceptible An. arabiensis colony. Knockdown resistance (kdr) and ace-IR mutations were not detected.

Conclusion: This study confirmed the presence of permethrin resistance in An. arabiensis populations from Gwave and emphasizes the importance of periodic and ongoing insecticide susceptibility testing of malaria vector populations whose responses to insecticide exposure may undergo rapid change over time.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Map of Zimbabwe showing study site location .
Figure 2
Figure 2
Multiplex PCR to identify An. longipalpis [16]. Lane 1: 1 Kb molecular weight marker, Lane 2: Negative control, Lane 3: An. longipalpis Type C (positive control), Lane 4 and 5: An. longipalpis Type C.
Figure 3
Figure 3
Mean optical density values of GST, monooxygenase and esterases enzymes in An. arabiensis F1 progeny reared from collections done in 2006, by family, and corresponding activity for susceptible An. arabiensis (KGB) samples assayed simultaneously.
Figure 4
Figure 4
Mean optical density values of GST, monooxygenase and esterases enzymes of F1 and F2 An. arabiensis progeny (perm screened) reared from collections done in 2008 and corresponding activity for susceptible An. arabiensis (KGB) samples assayed simultaneously.
Figure 5
Figure 5
Mean acetylcholinesterase percentage inhibition by propoxur in F1 progeny of An. arabiensis reared from wild-caught females collected in Gwave during February 2006.

References

    1. Midzi S, Teveredzi V, Mudyiradima R, Chihanga S, Netsa M, Mugove AT, Charimari L, Pasipamire J, Mutambu S, Kibassa C, Ngwenya N, Gausi K, Banda J, Mukelabai K, O'Connell T, Root G. Zimbabwe Roll Back Consultative Mission (Reaping): Essential actions to support the attainment of the Abuja Targets. Zimbabwe RBM Country Consultative Mission Final report; 2004.
    1. Crees MJ, Mhlanga C. Malaria prevalence in Zimbabwe and parasite survey of 1983. Zim Sci News. 1985;19:114–117.
    1. Taylor P, Mutambu SL. A review of the malaria situation in Zimbabwe with special reference to the period 1972–1981. Trans R Soc Trop Med Hyg. 1986;80:12–19. doi: 10.1016/0035-9203(86)90185-9. - DOI - PubMed
    1. Masendu HT, Hunt RH, Koekemoer LL, Brooke BD. Spatial and temporal distributions and insecticide susceptibility of malaria vectors in Zimbabwe. Afr Entomol. 2005;13:25–34.
    1. Mpofu SM. Seasonal vector density and disease incidence pattern in an area of Zimbabwe. Trans R Soc Trop Med Hyg. 1985;79:169–175. doi: 10.1016/0035-9203(85)90327-X. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources