Telomerase transduced osteoarthritis fibroblast-like synoviocytes display a distinct gene expression profile
- PMID: 19040300
- PMCID: PMC2689317
- DOI: 10.3899/jrheum.080505
Telomerase transduced osteoarthritis fibroblast-like synoviocytes display a distinct gene expression profile
Abstract
Objective: To examine the differential gene expression in telomerase transduced osteoarthritis fibroblast-like synoviocytes (hTERT-OA 13A FLS) and telomerase transduced rheumatoid arthritis FLS (hTERT-RA 516 FLS) and test the hypothesis that longterm culture of hTERT-OA 13A FLS display a disease-specific gene expression profile.
Methods: Gene expression in passage 8 hTERT-OA 13A FLS and passage 8 hTERT-RA 516 FLS were compared using microarray assays. Differential expression of selected genes was further examined by reverse transcription-polymerase chain reaction (RT-PCR). After continuous expansion in culture for an additional 4 months, gene expression in the longterm cultures of hTERT-OA 13A FLS and hTERT-RA 516 FLS was again examined with microarray and real-time RT-PCR.
Results: hTERT-OA 13A FLS displayed a distinct gene expression profile. While hTERT-RA 516 FLS expressedADAMTS1, ADAMTS3, ADAMTS5, and several carboxypeptidases, hTERT-OA 13A FLS expressed matrix metalloproteinase (MMP)1, MMP3, and several cathepsins at higher levels. Numerous genes classified in the immune response, lipid transport/catabolism, and phosphate transport biological processes were also expressed at higher levels in hTERT-OA 13A FLS. In contrast, numerous genes classified in the positive regulation of cell proliferation, anti-apoptosis, and angiogenesis biological processes were expressed at higher levels in hTERT-RA 516 FLS. Further, of the recently proposed 21 candidate synovial biomarkers of OA, 12 (57%) were detected in our study.
Conclusion: The findings indicate that OA FLS may not be a passive bystander in OA and that telomerase transduced OA FLS offer an alternative tool for the study of synovial disease markers and for the identification of new therapeutic targets for OA therapy.
Figures
References
-
- Muller-Ladner U, Kriegsmann J, Tschopp J, Gay RE, Gay S. Demonstration of granzyme A and perforin messenger RNA in the synovium of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38:477–84. - PubMed
-
- Jorgensen C, Sun R, Rossi JF, et al. Expression of a multidrug resistance gene in human rheumatoid synovium. Rheumatol Int. 1995;15:83–6. - PubMed
-
- Konttinen YT, Li TF, Mandelin J, et al. Increased expression of extracellular matrix metalloproteinase inducer in rheumatoid synovium. Arthritis Rheum. 2000;43:275–80. - PubMed
-
- Busteed S, Bennett MW, Molloy C, et al. Bcl-x(L) expression in vivo in rheumatoid synovium. Clin Rheumatol. 2006;25:789–93. - PubMed
-
- Aicher WK, Heer AH, Trabandt A, et al. Overexpression of zinc-finger transcription factor Z-225/Egr-1 in synoviocytes from rheumatoid arthritis patients. J Immunol. 1994;152:5940–8. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous