Hormone-induced calcium oscillations in liver cells can be explained by a simple one pool model
- PMID: 1904060
Hormone-induced calcium oscillations in liver cells can be explained by a simple one pool model
Abstract
Hormone-induced oscillations of the free intracellular calcium concentration are thought to be relevant for frequency encoding of hormone signals. In liver cells, such Ca2+ oscillations occur in response to stimulation by hormones acting via phosphoinositide breakdown. This observation may be explained by cooperative, positive feedback of Ca2+ on its own release from one inositol 1,4,5-trisphosphate-sensitive pool, obviating oscillations of inositol 1,4,5-trisphosphate. The kinetic rate laws of the associated model have a mathematical structure reminiscent of the Brusselator, a hypothetical chemical model involving a rather improbable trimolecular reaction step, thus giving a realistic biological interpretation to this hallmark of dissipative structures. We propose that calmodulin is involved in mediating this cooperativity and positive feedback, as suggested by the presented experiments. For one, hormone-induced calcium oscillations can be inhibited by the (nonphenothiazine) calmodulin antagonists calmidazolium or CGS 9343 B. Alternatively, in cells overstimulated by hormone, as characterized by a non-oscillatory elevated Ca2+ concentration, these antagonists could again restore sustained calcium oscillations. The experimental observations, including modulation of the oscillations by extracellular calcium, were in qualitative agreement with the predictions of our mathematical model.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
