Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan;50(1):151-60.
doi: 10.1093/pcp/pcn181. Epub 2008 Nov 27.

Acceleration of vacuolar regeneration and cell growth by overexpression of an aquaporin NtTIP1;1 in tobacco BY-2 cells

Affiliations

Acceleration of vacuolar regeneration and cell growth by overexpression of an aquaporin NtTIP1;1 in tobacco BY-2 cells

Emiko Okubo-Kurihara et al. Plant Cell Physiol. 2009 Jan.

Abstract

Aquaporin is a water channel that increases water permeability through membranous structures. In plants, vacuoles are essential organelles that undergo dynamic volume changes during cell growth. To understand the contribution of aquaporins to plant cell growth, we developed a transgenic tobacco BY-2 cell line overexpressing the tonoplast intrinsic protein (TIP), gammaTIP. Vacuolar membranes of isolated vacuoles from gammaTIP-overexpressing cells showed higher water permeation activities than those from wild-type cells. We then examined the role of gammaTIP in vacuolar regeneration of evacuolated tobacco BY-2 protoplasts (miniprotoplasts). Vacuolar regeneration from thin to thick tube-network vacuoles and subsequent development of large vacuoles was accelerated in miniprotoplasts of this cell line. A parallel increase in the rate of cell expansion indicated a tight relationship between vacuolar development and cellular volume increases. Interestingly, overexpression of tobacco gammaTIP also enhanced cell division. Thus, increased vacuolar aquaporin activity may accelerate both cell expansion and cell division by increasing water permeability through the vacuolar membrane.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources