Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Nov;4(11):e1000176.
doi: 10.1371/journal.pcbi.1000176. Epub 2008 Nov 28.

Differentiating protein-coding and noncoding RNA: challenges and ambiguities

Affiliations
Review

Differentiating protein-coding and noncoding RNA: challenges and ambiguities

Marcel E Dinger et al. PLoS Comput Biol. 2008 Nov.

Abstract

The assumption that RNA can be readily classified into either protein-coding or non-protein-coding categories has pervaded biology for close to 50 years. Until recently, discrimination between these two categories was relatively straightforward: most transcripts were clearly identifiable as protein-coding messenger RNAs (mRNAs), and readily distinguished from the small number of well-characterized non-protein-coding RNAs (ncRNAs), such as transfer, ribosomal, and spliceosomal RNAs. Recent genome-wide studies have revealed the existence of thousands of noncoding transcripts, whose function and significance are unclear. The discovery of this hidden transcriptome and the implicit challenge it presents to our understanding of the expression and regulation of genetic information has made the need to distinguish between mRNAs and ncRNAs both more pressing and more complicated. In this Review, we consider the diverse strategies employed to discriminate between protein-coding and noncoding transcripts and the fundamental difficulties that are inherent in what may superficially appear to be a simple problem. Misannotations can also run in both directions: some ncRNAs may actually encode peptides, and some of those currently thought to do so may not. Moreover, recent studies have shown that some RNAs can function both as mRNAs and intrinsically as functional ncRNAs, which may be a relatively widespread phenomenon. We conclude that it is difficult to annotate an RNA unequivocally as protein-coding or noncoding, with overlapping protein-coding and noncoding transcripts further confounding this distinction. In addition, the finding that some transcripts can function both intrinsically at the RNA level and to encode proteins suggests a false dichotomy between mRNAs and ncRNAs. Therefore, the functionality of any transcript at the RNA level should not be discounted.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Incidence of open reading frames (ORFs) in randomly generated transcripts of increasing length.
Twenty thousand transcripts of varying length and random nucleotide composition were computationally generated and scanned for ORFs. The maximum ORF and transcript lengths were plotted and fitted to a logarithmic curve. The shaded regions represent incidences of randomly occurring ORFs at 1, 2, or 3 standard deviations from the mean. The red line indicates the 300 nt ORF threshold that is commonly used to distinguish protein-coding genes in transcript classification pipelines. Therefore, this plot illustrates that for transcripts longer than ∼1000 bp, such a threshold may define transcripts as protein-coding that would be expected to occur by chance. The function y = 91.Ln(x)−330, which approximates random ORF incidence according to transcript length at two standard deviations above the mean (i.e., 95% confidence interval, indicated in green), could be used to discriminate noncoding from protein-coding transcripts in a transcript-length–dependent manner.

References

    1. Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13:894–897. - PubMed
    1. Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet. 2007;8:413–423. - PubMed
    1. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 15 Spec No. 2006;1:R17–R29. - PubMed
    1. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816. - PMC - PubMed
    1. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. - PubMed

Publication types

MeSH terms