Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 1;77(5):826-34.
doi: 10.1016/j.bcp.2008.11.004. Epub 2008 Nov 12.

Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione

Affiliations

Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione

Serena Viappiani et al. Biochem Pharmacol. .

Abstract

Matrix metalloproteinase-2 (MMP-2) has emerged as a key protease in various pathologies associated with oxidative stress, including myocardial ischemia-reperfusion, heart failure or inflammation. Peroxynitrite (ONOO(-)), an important effector of oxidative stress, was reported to activate some full length MMP zymogens, particularly in the presence of glutathione (GSH), but whether this occurs for MMP-2 is unknown. Treating MMP-2 zymogen with ONOO(-) resulted in a concentration-dependent regulation of MMP-2, with 0.3-1 microM ONOO(-) increasing and 30-100 microM ONOO(-) attenuating enzyme activity. The enzyme's V(max) was also significantly increased by 1 microM ONOO(-). Comparable responses to ONOO(-) treatment were observed using the intracellular target of MMP-2, troponin I (TnI). GSH at 100 microM attenuated the effects of ONOO(-) on MMP-2. Mass spectrometry revealed that ONOO(-) can oxidize and, in the presence of GSH, S-glutathiolate the MMP-2 zymogen or a synthetic peptide containing the cysteine-switch motif in the enzyme's autoinhibitory domain. These results suggest that ONOO(-) and GSH can modulate the activity of 72 kDa MMP-2 by modifying the cysteine residue in the autoinhibitory domain of the zymogen, a process that may be relevant to pathophysiological conditions associated with increased oxidative stress.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources