PEGylation of brain-derived neurotrophic factor for preserved biological activity and enhanced spinal cord distribution
- PMID: 19048635
- PMCID: PMC3990442
- DOI: 10.1002/jbm.a.32254
PEGylation of brain-derived neurotrophic factor for preserved biological activity and enhanced spinal cord distribution
Abstract
Brain-derived neurotrophic factor (BDNF) was covalently attached to polyethylene glycol (PEG) in order to enhance delivery to the spinal cord via the cerebrospinal fluid (intrathecal administration). By varying reaction conditions, mixtures of BDNF covalently attached to one (primary), two (secondary), three (tertiary), or more (higher order) PEG molecules were produced. The biological activity of each resulting conjugate mixture was assessed with the goal of identifying a relationship between the number of PEG molecules attached to BDNF and biological activity. A high degree of in vitro biological activity was maintained in mixtures enriched in primary and secondary conjugate products, while a substantial reduction in biological activity was observed in mixtures with tertiary and higher order conjugates. When a biologically active mixture of PEG-BDNF was administered intrathecally, it displayed a significantly improved half-life in the cerebrospinal fluid and an enhanced penetration into spinal cord tissue relative to native BDNF. Results from these studies suggest a PEGylation strategy that preserves the biological activity of the protein while also improving the half-life of the protein in vivo. Furthermore, PEGylation may be a promising approach for enhancing intrathecal delivery of therapeutic proteins with potential for treating disease and injury in the spinal cord.
Copyright 2008 Wiley Periodicals, Inc.
Figures
References
-
- Stroh M, Zipfel WR, Williams RM, Ma SC, Webb WW, Saltzman WM. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion. Nature Materials. 2004;3(7):489–494. - PubMed
-
- Ankeny DP, McTigue DM, Guan Z, Yan Q, Kinstler O, Stokes BT, Jakeman LB. Pegylated brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury. Experimental Neurology. 2001;170(1):85–100. - PubMed
-
- Kishino A, Katayama N, Ishige Y, Yamamoto Y, Ogo H, Tatsuno T, Mine T, Noguchi H, Nakayama C. Analysis of effects and pharmacokinetics of subcutaneously administered BDNF. Neuroreport. 2001;12(5):1067–1072. - PubMed
-
- Encinas M, Iglesias M, Llecha N, Comella JX. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. Journal Of Neurochemistry. 1999;73(4):1409–1421. - PubMed
-
- Miki K, Fukuoka T, Tokunaga A, Kondo E, Dai Y, Noguchi K. Differential effect of brain-derived neurotrophic factor on high-threshold mechanosensitivity in a rat neuropathic pain model. Neuroscience Letters. 2000;278(1-2):85–88. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
