Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun 25;266(18):12105-13.

Characterization of the mutation responsible for aspartylglucosaminuria in three Finnish patients. Amino acid substitution Cys163----Ser abolishes the activity of lysosomal glycosylasparaginase and its conversion into subunits

Affiliations
  • PMID: 1904874
Free article

Characterization of the mutation responsible for aspartylglucosaminuria in three Finnish patients. Amino acid substitution Cys163----Ser abolishes the activity of lysosomal glycosylasparaginase and its conversion into subunits

K J Fisher et al. J Biol Chem. .
Free article

Abstract

The mutation that causes a deficiency of the lysosomal amidase, glycosylasparaginase, has been characterized in fibroblasts from three Finnish patients diagnosed with aspartylglucosaminuria (AGU). The polymerase chain reaction was used to amplify the glycosylasparaginase protein coding sequence from the three AGU patients in order to compare them to the normal sequence from a full-length human placenta cDNA clone HPAsn.6 (Fisher, K.J., Tollersrud, O.K., and Aronson, N.N., Jr. (1990) FEBS Lett. 269, 440-444). Two base changes were found to be common to all three Finnish AGU patients, a G482----A transition that results in an Arg161----Gln substitution and a G488----C transversion that causes Cys163----Ser. Detection of both point mutations from PCR-amplified cDNA or genomic DNA was facilitated by their creation of new endonuclease restriction sites. Expression studies in COS-1 cells revealed only the Cys163----Ser mutation caused a deficiency of glycosylasparaginase activity. This same substitution also prevented the normal posttranslational processing of the precursor glycosylasparaginase polypeptide into its alpha and beta subunits. Cell-free expression of the single-chain glycosylasparaginase precusor did not produce an active enzyme, suggesting that post-translational generation of subunits may be required for catalytic activity.

PubMed Disclaimer

Publication types

MeSH terms