Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan;67(1):93-102.
doi: 10.1111/j.1574-6941.2008.00599.x.

Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities

Affiliations
Free article

Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities

Wei Xiang Wu et al. FEMS Microbiol Ecol. 2009 Jan.
Free article

Abstract

Photosynthetic assimilation of CO2 is a primary source of carbon in soil and root exudates and can influence the community dynamics of rhizosphere organisms. Thus, if carbon partitioning is affected in transgenic crops, rhizosphere microbial communities may also be affected. In this study, the temporal effects of gene transformation on carbon partitioning in rice and rhizosphere microbial communities were investigated under greenhouse conditions using the 13C pulse-chase labeling method and phospholipid fatty acid (PLFA) analysis. The 13C contents in leaves of transgenic (Bt) and nontransgenic (Ck) rice were significantly different at the seedling, booting and heading stages. There were no detectable differences in 13C distribution in rice roots and rhizosphere microorganisms at any point during rice development. Although a significantly lower amount of Gram-positive bacterial PLFAs and a higher amount of Gram-negative bacterial PLFAs were observed in Bt rice rhizosphere as compared with Ck at all plant development stages, there were no significant differences in the amount of individual 13C-PLFA between Bt and Ck rhizospheres at any growing stage. These findings indicate that the insertion of cry1Ab and marker genes into rice had no persistent or adverse effect on the photosynthate distribution in rice or the microbial community composition in its rhizosphere.

PubMed Disclaimer

Publication types

MeSH terms