Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb 6;284(6):3946-55.
doi: 10.1074/jbc.M803614200. Epub 2008 Dec 2.

Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity

Affiliations
Free article

Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity

Laetitia Arzoine et al. J Biol Chem. .
Free article

Abstract

In brain and tumor cells, the hexokinase isoforms, HK-I and HK-II, bind to the voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane. The VDAC domains interacting with these anti-apoptotic proteins were recently defined using site-directed mutagenesis. Now, we demonstrate that synthetic peptides corresponding to the VDAC1 N-terminal region and selected sequences bound specifically, in a concentration- and time-dependent manner, to immobilized HK-I, as revealed by real time surface plasmon resonance technology. The same VDAC1-based peptides also detached HK bound to brain or tumor-derived mitochondria. Moreover, expression of the VDAC1-based peptides in cells overexpressing HK-I or HK-II prevented HK-mediated protection against staurosporine-induced release of cytochrome c and subsequent cell death. One loop-shaped VDAC1-based peptide corresponding to a selected sequence and fused to a cell-penetrating peptide entered the cell and prevented the anti-apoptotic effects of HK-I and HK-II. This peptide detached mitochondrial-bound HK better than did the same peptide in its linear form. Both cell-expressed and exogenously added cell-penetrating peptide detached mitochondrial-bound HK-I-GFP. These results point to HK-I and HK-II as promoting tumor cell survival through binding to VDAC1, thereby inhibiting cytochrome c release and apoptotic cell death. Moreover, VDAC1-based peptides interfering with HK-mediated anti-apoptotic activity may potentiate the efficacy of conventional chemotherapeutic agents.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources