Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 2;15(12):895-8.
doi: 10.1101/lm.1072808. Print 2008 Dec.

Reward prediction error signals by reticular formation neurons

Affiliations

Reward prediction error signals by reticular formation neurons

Corey B Puryear et al. Learn Mem. .

Abstract

As a key part of the brain's reward system, midbrain dopamine neurons are thought to generate signals that reflect errors in the prediction of reward. However, recent evidence suggests that "upstream" brain areas may make important contributions to the generation of prediction error signals. To address this issue, we recorded neural activity in midbrain reticular formation (MRNm) while rats performed a spatial working memory task. A large proportion of these neurons displayed positive and negative reward prediction error-related activity that was strikingly similar to that observed in dopamine neurons. Therefore, MRNm may be a source of reward prediction error signals.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Histology and basic firing properties of MRNm neurons. (A) Distribution of cells localized to MRNm. Each dot may represent the location of more than one neuron. Coronal slices adapted from Swanson (2003) (reprinted with permission from Academic Press ©2003). (B) Rats displayed preference for arms that contained large amounts of reward. Plotted is the average probability of choosing a large reward arm during the first four arm choices of the test phase of each trial. Error bars represent SEM. (C) Distribution of average firing rates and spike duration of MRNm neurons. Most cells fired less than 10 spikes/sec and exhibited waveform durations between 1.5 and 2.0 msec. (D) Examples of two MRNm neurons. Top row shows their average waveform on each wire of the tetrode. Scale bar = 1 msec. Middle and bottom rows depict their interspike interval and autocorrelation histograms, respectively.
Figure 2.
Figure 2.
Reward-related activity of MRNm neurons. (A) Peri-event time histograms of one cell that exhibited a short-latency, excitatory response upon acquisition of rewards (t(0), bin width = 50 msec). Left histogram shows only a modest excitatory response when considering all rewards together. However, top and bottom right histograms show that the reward-related firing occurred upon acquisition of large and not small rewards. Gray-shaded areas indicate time periods analyzed for significant increases in firing rate. (B) Population summary of the proportion of MRNm neurons that demonstrated significant reward-related activity.
Figure 3.
Figure 3.
Reward prediction errors in MRNm neurons. (A) Plotted is each neuron’s normalized large reward activity (RAN, defined in text) for each block of trials. The reward activity during block 2 (y-axis) represents activity at times when more reward than expected was obtained. Note that reward-related activity during these times is consistently more robust than during times in which the rat received the expected reward (block 1), indicating that positive reward prediction errors occurred. (B) Plotted are RAN values for rewarded and devalued arms in block 2 (x- and y-axes, respectively). Devalued arms include arms associated with a large amount of reward but baited with a small amount of reward, arms in which reward was omitted, and arms containing small rewards visited in darkness. Note that reward-related activity on devalued arms is consistently suppressed, indicating that negative reward prediction errors occurred. (Symbols in A,B: ● indicates cell recorded in darkness condition; o, cell recorded in reward omission condition; and x, cell recorded in reward location switch condition.) (C) Average changes in reward activity (RACI, defined in text) for times in which the rat obtained more and less reward than expected. Asterisks indicate significant differences (P < 0.05). Error bars indicate SEM. (D) An example of one neuron that did not respond to acquisition of rewards during the first block of trials. When the locations of large and small rewards were switched, however, the cell developed an excitatory response to acquisition of large rewards on arms previously associated with small amounts of reward (positive reward prediction error). Furthermore, the firing of the cell was inhibited upon acquisition of small rewards on arms previously associated with large amounts of reward (negative reward prediction error).

References

    1. Bayer H.M., Glimcher P.W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron. 2005;47:129–141. - PMC - PubMed
    1. Christoph G.R., Leonzio R.J., Wilcox K.S. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J. Neurosci. 1986;6:613–619. - PMC - PubMed
    1. Fabre M., Rolls E.T., Ashton J.P., Williams G. Activity of neurons in the ventral tegmental region of the behaving monkey. Behav. Brain Res. 1983;9:213–235. - PubMed
    1. Fields H.L., Hjelmstad G.O., Margolis E.B., Nicola S.M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 2007;30:289–316. - PubMed
    1. Floresco S.B., West A.R., Ash B., Moore H., Grace A.A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 2003;6:968–973. - PubMed

Publication types

LinkOut - more resources