Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 15;181(12):8735-44.
doi: 10.4049/jimmunol.181.12.8735.

Alveolar macrophages from septic mice promote polymorphonuclear leukocyte transendothelial migration via an endothelial cell Src kinase/NADPH oxidase pathway

Affiliations

Alveolar macrophages from septic mice promote polymorphonuclear leukocyte transendothelial migration via an endothelial cell Src kinase/NADPH oxidase pathway

Zhanfei Wang et al. J Immunol. .

Abstract

Alveolar macrophages (AMphi) have been implicated in the polymorphonuclear leukocyte (PMN) recruitment to the lungs during sepsis. Using an in vivo murine model of sepsis (feces in the peritoneum), we show that peritonitis leads to increased activation of AMphi and PMN migration into pulmonary alveoli. To assess cellular mechanisms, an in vitro construct of the pulmonary vascular-interstitial interface (murine AMphi, pulmonary endothelial cells, and PMN) and a chimera approach were used. Using immunologic (Abs) and genetic blockade (CXCR2-deficient AMphi), we show that CXC chemokines in septic plasma are responsible for the activation of AMphi. The activated AMphi can promote PMN transendothelial migration, even against a concentration gradient of septic plasma, by generating platelet-activating factor and H(2)O(2). Platelet-activating factor/H(2)O(2) induce an oxidant stress in the adjacent endothelial cells, an event that appears to be a prerequisite for PMN transendothelial migration, since PMN migration is abrogated across Cu/Zn-superoxide dismutase overexpressing endothelial cells. Using gp91-deficient endothelial cells, we show that NADPH oxidase plays an important role in the AMphi-induced PMN transendothelial migration. Pharmacologic/small interfering RNA blockade of Src kinase inhibits AMphi-induced endothelial NADPH oxidase activation and PMN migration. Collectively, our findings indicate that the PMN transendothelial migration induced by septic AMphi is dependent on the generation of superoxide in endothelial cells via the Src kinase/NADPH oxidase signaling pathway.

PubMed Disclaimer

Publication types

MeSH terms