Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 25;112(51):16654-63.
doi: 10.1021/jp805784u.

Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids

Affiliations

Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids

A Yokozeki et al. J Phys Chem B. .

Abstract

Gaseous solubilities of carbon dioxide (CO2) in 18 room-temperature ionic liquids (RTILs) have been measured at an isothermal condition (about 298 K) using a gravimetric microbalance. The observed pressure-temperature-composition (PTx) data have been analyzed by use of an equation-of-state (EOS) model, which has been successfully applied for our previous works. Henry's law constants have been obtained from the observed (PTx) data directly and/or from the EOS correlation. Ten RTILs among the present ionic liquids results in the physical absorption, and eight RTILs show the chemical absorption. The classification of whether the absorption is the physical or chemical type is based on the excess Gibbs and enthalpy functions as well as the magnitude of the Henry's constant. In the chemical absorption cases, the ideal association model has been applied in order to interpret those excess thermodynamic functions. Then, two types of the chemical associations (AB and AB2, where A is CO2 and B is RTIL) have been observed with the heat of complex formations of about -11 (for AB) and from -27 to -37 (for AB2) kJ x mol(-1), respectively.

PubMed Disclaimer

LinkOut - more resources