Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;58(1):1-12.
doi: 10.1111/j.1365-313X.2008.03756.x. Epub 2008 Dec 29.

Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana

Affiliations
Free article

Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana

Reetta Ahlfors et al. Plant J. 2009 Apr.
Free article

Abstract

Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O₃) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O₃-induced cell death. Treatment with O₃ induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O₃ individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O₃ induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O₃-induced SA accumulation. The O₃-sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 (Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1), a mutant with decreased production of NO, was also O₃ sensitive. This, together with experiments combining O₃ and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O₃ exposure, and that a functional NO production is needed for a proper O₃ response. In summary, NO is an important signalling molecule in the response to O₃.

PubMed Disclaimer

Publication types

MeSH terms