Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 May 15;24(9):2749-65.
doi: 10.1016/j.bios.2008.10.003. Epub 2008 Oct 21.

Status of biomolecular recognition using electrochemical techniques

Affiliations
Review

Status of biomolecular recognition using electrochemical techniques

Omowunmi A Sadik et al. Biosens Bioelectron. .

Abstract

The use of nanoscale materials (e.g., nanoparticles, nanowires, and nanorods) for electrochemical biosensing has seen explosive growth in recent years following the discovery of carbon nanotubes by Sumio Ijima in 1991. Although the resulting label-free sensors could potentially simplify the molecular recognition process, there are several important hurdles to be overcome. These include issues of validating the biosensor on statistically large population of real samples rather than the commonly reported relatively short synthetic oligonucleotides, pristine laboratory standards or bioreagents; multiplexing the sensors to accommodate high-throughput, multianalyte detection as well as application in complex clinical and environmental samples. This article reviews the status of biomolecular recognition using electrochemical detection by analyzing the trends, limitations, challenges and commercial devices in the field of electrochemical biosensors. It provides a survey of recent advances in electrochemical biosensors including integrated microelectrode arrays with microfluidic technologies, commercial multiplex electrochemical biosensors, aptamer-based sensors, and metal-enhanced electrochemical detection (MED), with limits of detection in the attomole range. Novel applications are also reviewed for cancer monitoring, detection of food pathogens, as well as recent advances in electrochemical glucose biosensors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources