Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 3:8:211.
doi: 10.1186/1471-2180-8-211.

Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

Affiliations

Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

Marie-Laure Rosso et al. BMC Microbiol. .

Abstract

Background: In man, infection by the Gram-negative enteropathogen Yersinia pseudotuberculosis is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia.

Results: To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in Y. pseudotuberculosis was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in Escherichia coli. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to E. coli) acetate may be further metabolized in Y. pseudotuberculosis. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the yadA adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed.

Conclusion: Our results suggest that plasma growth of Y. pseudotuberculosis is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Medium- and temperature-dependent differential expression of Y. pseudotuberculosis chromosomal genes involved in virulence and/or iron uptake & storage. Significant (p < 0.05) upshifts (yellow to red scale) or downshifts (blue scale) in individual gene transcription levels when bacteria were grown in human plasma versus LB (triangles) and/or at 37°C versus 28°C (squares) are indicated by the color scale bar. Genes encoding iron uptake/storage systems, virulence factors and their regulators are symbolized by gray, white and black arrows, respectively. Nomenclature used for gene designation correspond to the Y. pseudotuberculosis IP32953 genome annotation. Mean fold changes in transcription and p-values are indicated in Table 2.
Figure 2
Figure 2
Medium-dependent differential expression of genes coding for enzymes putatively involved in Y. pseudotuberculosis glycolysis and the tricarboxylic acid cycle (TCA cycle). Significant (p < 0.05) upshifts (yellow to red scale) or downshifts (blue scale) in individual gene transcription levels in human plasma versus LB is indicated by the color scale bar. Open boxes indicate genes whose expression levels did not vary significantly (p > 0.05). Although considered as not significant by statistical analysis of macroarray data (p = 0.053), transcriptional upregulation of aceB in human plasma was confirmed by qRT-PCR. Abbreviations: Ac-CoA: acetyl coenzyme A; PEP: phosphoenolpyruvate. Mean fold changes in transcription and p-values are indicated in Table 2.
Figure 3
Figure 3
Medium- and temperature-dependent differential expression of genes harbored by the Y. pseudotuberculosis virulence plasmid pYV. Significant (p < 0.05) upshifts (yellow to red scale) or downshifts (blue scale) in individual gene transcription levels when bacteria were grown in human plasma versus LB (triangles) and/or at 37°C versus 28°C (squares) are indicated by the color scale bar. Only genes spotted on the macroarray (56 out of 99 pYV-borne genes) are shown and those encoding the secretion apparatus and Yop effectors are represented by grey and black boxes, respectively. Mean fold changes in transcription and p-values are indicated in Table 3.

References

    1. Vincent P, Leclerc A, Martin L, Yersinia Surveillance Network. Duez J-M, Simonet M, Carniel E. Sudden onset of pseudotuberculosis in humans, France, 2004–05. Emerg Infect Dis. 2008 - PMC - PubMed
    1. Putzker M, Sauer H, Sobe D. Plague and other human infections caused by Yersinia species. Clin Lab. 2001;47:453–466. - PubMed
    1. Marceau M. Transcriptional regulation in Yersinia: an update. Curr Issues Mol Biol. 2005;7:151–177. - PubMed
    1. Darwin AJ. Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Curr Issues Mol Biol. 2005;7:135–149. - PubMed
    1. Revell PA, Miller VL. Yersinia virulence: more than a plasmid. FEMS Microbiol Lett. 2001;205:159–164. doi: 10.1111/j.1574-6968.2001.tb10941.x. - DOI - PubMed

Publication types

MeSH terms