Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 1;69(4):363-72.
doi: 10.1002/pros.20887.

Clinical utility of five genetic variants for predicting prostate cancer risk and mortality

Affiliations

Clinical utility of five genetic variants for predicting prostate cancer risk and mortality

Claudia A Salinas et al. Prostate. .

Abstract

Background: A recent report suggests that the combination of five single-nucleotide polymorphisms (SNPs) at 8q24, 17q12, 17q24.3 and a family history of the disease may predict risk of prostate cancer. The present study tests the performance of these factors in prediction models for prostate cancer risk and prostate cancer-specific mortality.

Methods: SNPs were genotyped in population-based samples from Caucasians in King County, Washington. Incident cases (n = 1,308), aged 35-74, were compared to age-matched controls (n = 1,266) using logistic regression to estimate odds ratios (OR) associated with genotypes and family history. Cox proportional hazards models estimated hazard ratios for prostate cancer-specific mortality according to genotypes.

Results: The combination of SNP genotypes and family history was significantly associated with prostate cancer risk (p(trend) = 1.5 x 10(-20)). Men with > or =5 risk factors had an OR of 4.9 (95% CI 1.6-18.5) compared to men with none. However, this combination of factors did not improve the ROC curve after accounting for known risk predictors (i.e., age, serum PSA, family history). Neither the individual nor combined risk factors was associated with prostate cancer-specific mortality.

Conclusion: Genotypes for five SNPs plus family history are associated with a significant elevation in risk for prostate cancer and may explain up to 45% of prostate cancer in our population. However, they do not improve prediction models for assessing who is at risk of getting or dying from the disease, once known risk or prognostic factors are taken into account. Thus, this SNP panel may have limited clinical utility.

PubMed Disclaimer

Figures

Figure 1
Figure 1
ROC curves for the effect of five SNPs in the 8q24, 17q12, and 17q243 chromosomal regions in predicting risk of prostate cancer. Solid line indicates curve fit with clinical variables only (i.e., age, serum PSA level at diagnosis or interview, first-degree family history of prostate cancer) and dashed line indicates curve fit with clinical variables plus the five SNPs.
Figure 2
Figure 2
ROC curves for the effect of five SNPs in the 8q24, 17q12, and 17q24.3 chromosomal regions in predicting ten-year prostate cancer-specific mortality. Solid line indicates curve fit with clinical variables only (i.e., age at diagnosis, stage, Gleason score, serum PSA level at diagnosis, first-degree family history of prostate cancer, and primary treatment) and dashed line indicates curve fit with clinical variables plus the five SNPs.

References

    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics. CA Cancer J Clin. 2008;58(2):71–96. - PubMed
    1. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Cazier JB, Sainz J, Jakobsdottir M, Kostic J, Magnusdottir DN, Ghosh S, Agnarsson K, Birgisdottir B, Le Roux L, Olafsdottir A, Blondal T, Andresdottir M, Gretarsdottir OS, Bergthorsson JT, Gudbjartsson D, Gylfason A, Thorleifsson G, Manolescu A, Kristjansson K, Geirsson G, Isaksson H, Douglas J, Johansson JE, Balter K, Wiklund F, Montie JE, Yu X, Suarez BK, Ober C, Cooney KA, Gronberg H, Catalona WJ, Einarsson GV, Barkardottir RB, Gulcher JR, Kong A, Thorsteinsdottir U, Stefansson K. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652–658. - PubMed
    1. Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, Penney K, Steen RG, Ardlie K, John EM, Oakley-Girvan I, Whittemore AS, Cooney KA, Ingles SA, Altshuler D, Henderson BE, Reich D. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A. 2006;103(38):14068–14073. - PMC - PubMed
    1. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T, Bergthorsson JT, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Xu J, Blondal T, Kostic J, Sun J, Ghosh S, Stacey SN, Mouy M, Saemundsdottir J, Backman VM, Kristjansson K, Tres A, Partin AW, Albers-Akkers MT, Godino-Ivan Marcos J, Walsh PC, Swinkels DW, Navarrete S, Isaacs SD, Aben KK, Graif T, Cashy J, Ruiz-Echarri M, Wiley KE, Suarez BK, Witjes JA, Frigge M, Ober C, Jonsson E, Einarsson GV, Mayordomo JI, Kiemeney LA, Isaacs WB, Catalona WJ, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39(5):631–637. - PubMed
    1. Wang L, McDonnell SK, Slusser JP, Hebbring SJ, Cunningham JM, Jacobsen SJ, Cerhan JR, Blute ML, Schaid DJ, Thibodeau SN. Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res. 2007;67(7):2944–2950. - PubMed

Publication types