Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;255(1):57-65.
doi: 10.1016/0921-8777(91)90018-k.

Differential repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in DNA of human fibroblasts exposed to ultraviolet light and 4-nitroquinoline 1-oxide

Affiliations

Differential repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in DNA of human fibroblasts exposed to ultraviolet light and 4-nitroquinoline 1-oxide

R Mirzayans et al. Mutat Res. 1991 Jul.

Abstract

The extent of DNA excision repair was determined in dermal fibroblast strains from clinically normal and xeroderma pigmentosum (XP; complementation group A) human donors after single or combined exposures to 254-nm ultraviolet light and 4-nitroquinoline 1-oxide (4NQO). The repair was monitored by incubation of the treated cultures in the presence of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of long-patch excision repair, followed by quantitation of araC-accumulated DNA single-strand breaks (representing repair events) by velocity sedimentation analysis in alkaline sucrose gradients. The amount of repair in normal fibroblast strains increased as a function of UV fluence and reached a plateau at 15 J/m2; strand breaks were not detected when these same cultures were irradiated with as much as 60 J/m2 UV and incubated in the absence of araC, implying that an initial (incision) step is rate-limiting in the repair of UV damage. In normal fibroblasts (i) the incidence of araC-detectable lesions removed during fixed intervals following exposure to 4NQO (4 microM; 30 min) was approximately 2.5 times greater than that seen following irradiation with repair-saturating fluences (greater than or equal to 15 J/m2) of UV-rays; and (ii) the amount of repair in cultures treated simultaneously with 4NQO (0.5-6 microM; 30 min) and a repair-saturating fluence of UV (20 J/m2) was found to approach the sum of that arising from exposure to each separately. The XP cells (XP12BE) exhibited a deficiency in the removal of araC-detectable DNA lesions following exposure to either of the carcinogens. Since araC is known to inhibit the repair of alkali-stable 4NQO-DNA adducts (i.e., lesions assumed to be removed by the UV-like excision pathway) but not that of alkali-labile sites (i.e., DNA lesions operated on by the X-ray-like repair pathway), our results strongly imply that the multistep excision-repair pathway operative on UV photoproducts in human fibroblasts differs from that responsible for removing alkali-stable (araC-detectable) 4NQO adducts by at least one step, presumably the rate-limiting incision reaction mediated by a lesion-recognizing endonuclease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources