Differential repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in DNA of human fibroblasts exposed to ultraviolet light and 4-nitroquinoline 1-oxide
- PMID: 1906130
- DOI: 10.1016/0921-8777(91)90018-k
Differential repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in DNA of human fibroblasts exposed to ultraviolet light and 4-nitroquinoline 1-oxide
Abstract
The extent of DNA excision repair was determined in dermal fibroblast strains from clinically normal and xeroderma pigmentosum (XP; complementation group A) human donors after single or combined exposures to 254-nm ultraviolet light and 4-nitroquinoline 1-oxide (4NQO). The repair was monitored by incubation of the treated cultures in the presence of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of long-patch excision repair, followed by quantitation of araC-accumulated DNA single-strand breaks (representing repair events) by velocity sedimentation analysis in alkaline sucrose gradients. The amount of repair in normal fibroblast strains increased as a function of UV fluence and reached a plateau at 15 J/m2; strand breaks were not detected when these same cultures were irradiated with as much as 60 J/m2 UV and incubated in the absence of araC, implying that an initial (incision) step is rate-limiting in the repair of UV damage. In normal fibroblasts (i) the incidence of araC-detectable lesions removed during fixed intervals following exposure to 4NQO (4 microM; 30 min) was approximately 2.5 times greater than that seen following irradiation with repair-saturating fluences (greater than or equal to 15 J/m2) of UV-rays; and (ii) the amount of repair in cultures treated simultaneously with 4NQO (0.5-6 microM; 30 min) and a repair-saturating fluence of UV (20 J/m2) was found to approach the sum of that arising from exposure to each separately. The XP cells (XP12BE) exhibited a deficiency in the removal of araC-detectable DNA lesions following exposure to either of the carcinogens. Since araC is known to inhibit the repair of alkali-stable 4NQO-DNA adducts (i.e., lesions assumed to be removed by the UV-like excision pathway) but not that of alkali-labile sites (i.e., DNA lesions operated on by the X-ray-like repair pathway), our results strongly imply that the multistep excision-repair pathway operative on UV photoproducts in human fibroblasts differs from that responsible for removing alkali-stable (araC-detectable) 4NQO adducts by at least one step, presumably the rate-limiting incision reaction mediated by a lesion-recognizing endonuclease.
Similar articles
-
Lack of correlation between DNA strand breakage and p53 protein levels in human fibroblast strains exposed to ultraviolet lights.Photochem Photobiol. 2000 Oct;72(4):562-8. doi: 10.1562/0031-8655(2000)072<0562:locbds>2.0.co;2. Photochem Photobiol. 2000. PMID: 11045730
-
Dose-dependent increase in repair of 1-beta-D-arabinofuranosylcytosine-detectable DNA lesions in UV-treated xeroderma pigmentosum (group A) fibroblasts.Mutat Res. 1991 Mar;262(3):151-7. doi: 10.1016/0165-7992(91)90015-v. Mutat Res. 1991. PMID: 2002813
-
Hypersensitivity to cell killing and faulty repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in human (ataxia-telangiectasia) fibroblasts treated with 4-nitroquinoline 1-oxide.Cancer Res. 1989 Oct 15;49(20):5523-9. Cancer Res. 1989. PMID: 2507129
-
Inverse correlation between p53 protein levels and DNA repair efficiency in human fibroblast strains treated with 4-nitroquinoline 1-oxide: evidence that lesions other than DNA strand breaks trigger the p53 response.Carcinogenesis. 1999 Jun;20(6):941-6. doi: 10.1093/carcin/20.6.941. Carcinogenesis. 1999. PMID: 10357771
-
Induction and repair of DNA strand breaks and 1-beta-D-arabinofuranosylcytosine-detectable sites in 40-75 kVp X-irradiated compared to 60Co gamma-irradiated human cell lines.Radiat Res. 1988 Apr;114(1):168-85. Radiat Res. 1988. PMID: 3353503
Cited by
-
Effect of DNA-repair-enzyme modulators on cytotoxicity of L-phenylalanine mustard and cis-diamminedichloroplatinum (II) in mammary carcinoma cells resistant to alkylating drugs.Cancer Chemother Pharmacol. 1994;34(2):153-8. doi: 10.1007/BF00685933. Cancer Chemother Pharmacol. 1994. PMID: 8194166
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials