Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Jul 15;88(14):6087-91.
doi: 10.1073/pnas.88.14.6087.

Molecular structure of Bacillus subtilis aspartate transcarbamoylase at 3.0 A resolution

Affiliations
Comparative Study

Molecular structure of Bacillus subtilis aspartate transcarbamoylase at 3.0 A resolution

R C Stevens et al. Proc Natl Acad Sci U S A. .

Abstract

The three-dimensional structure of Bacillus subtilis aspartate transcarbamoylase (ATCase; aspartate carbamoyltransferase; carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) has been solved by the molecular replacement method at 3.0 A resolution and refined to a crystallographic R factor of 0.19. The enzyme crystallizes in the space group C2 with unit cell dimensions a = 258.5, b = 153.2, and c = 51.9 A and beta = 97.7 degrees. The asymmetric unit is composed of three monomers related by noncrystallographic threefold symmetry. A total of 295 of 304 amino acid residues have been built into the monomer. The last 9 residues in the C terminus were not included in the final model. Each monomer consists of 34% alpha-helix and 18% beta-strand. Three solvent-exposed loop regions (residues 69-84, 178-191, and 212-229) are not well defined in terms of electron density. The catalytic trimer of ATCase from B. subtilis shows great similarity to the catalytic trimer in Escherichia coli ATCase, which was used in constructing the model for molecular replacement. The unliganded trimer from B. subtilis, which is not cooperative, resembles the T (inactive) state slightly more than the R (active)-state form of the E. coli trimer. However, certain regions in the B. subtilis trimer exhibit shifts toward the E. coli R-state conformation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Trends Biochem Sci. 1990 Feb;15(2):53-9 - PubMed
    1. Methods Enzymol. 1985;114:416-52 - PubMed
    1. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5276-80 - PubMed
    1. J Mol Biol. 1968 Apr 28;33(2):491-7 - PubMed
    1. J Mol Biol. 1973 Apr 5;75(2):429-32 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources