Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr;7(2):195-208.
doi: 10.1007/BF01618124.

Accuracy of end-tidal carbon dioxide tension analyzers

Affiliations

Accuracy of end-tidal carbon dioxide tension analyzers

D B Raemer et al. J Clin Monit. 1991 Apr.

Erratum in

  • J Clin Monit 1991 Oct;7(4):303

Abstract

Substantial mean differences between arterial carbon dioxide tension (PaCO2) and end-tidal carbon dioxide tension (PETCO2) in anesthesia and intensive care settings have been demonstrated by a number of investigators. We have explored the technical causes of error in the measurement of PETCO2 that could contribute to the observed differences. In a clinical setting, the measurement of PETCO2 is accomplished with one of three types of instruments, infrared analyzers, mass spectrometers, and Raman spectrometers, whose specified accuracies are typically +/- 2, +/- 1.5, and +/- 0.5 mm Hg, respectively. We examined potential errors in PETCO2 measurement with respect to the analyzer, sampling system, environment, and instrument. Various analyzer error sources were measured, including stability, warm-up time, interference from nitrous oxide and oxygen, pressure, noise, and response time. Other error sources, including calibration, resistance in the sample catheter, pressure changes, water vapor, liquid water, and end-tidal detection algorithms, were considered and are discussed. On the basis of our measurements and analysis, we estimate the magnitude of the major potential errors for an uncompensated infrared analyzer as: inaccuracy, 2 mm Hg; resolution, 0.5 mm Hg; noise, 2 mm Hg; instability (12 hours), 3 mm Hg; miscalibration, 1 mm Hg; selectivity (70% nitrous oxide), 6.5 mm Hg; selectivity (100% oxygen), -2.5 mm Hg; atmospheric pressure change, less than 1 mm Hg; airway pressure at 30 cm H2O, 2 mm Hg; positive end-expiratory pressure or continuous positive airway pressure at 20 cm H2O, 1.5 mm Hg; sampling system resistance, less than 1 mm Hg; and water vapor, 2.5 mm Hg. In addition to these errors, other systematic mistakes such as an inaccurate end-tidal detection algorithm, poor calibration technique, or liquid water contamination can lead to gross inaccuracies. In a clinical setting, unless the user is confident that all of the technical error sources have been eliminated and the physiologic factors are known, depending on PETCO2 to determine PaCO2 is not advised.

PubMed Disclaimer

References

    1. Anesth Analg. 1988 Jun;67(6):579-81 - PubMed
    1. Anesthesiology. 1988 Sep;69(3):441 - PubMed
    1. J Clin Monit. 1989 Jan;5(1):34-6 - PubMed
    1. Anesth Analg. 1987 Jul;66(7):690-2 - PubMed
    1. Anesthesiology. 1961 May-Jun;22:429-32 - PubMed

LinkOut - more resources