Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;219(1):69-76.
doi: 10.1002/jcp.21648.

Lipido-sterolic extract of Serenoa repens (LSESr, Permixon) treatment affects human prostate cancer cell membrane organization

Affiliations

Lipido-sterolic extract of Serenoa repens (LSESr, Permixon) treatment affects human prostate cancer cell membrane organization

E Petrangeli et al. J Cell Physiol. 2009 Apr.

Abstract

The molecular mechanism by which the lipido-sterolic extract of Serenoa repens (LSESr, Permixon) affects prostate cells remains to be fully elucidated. In androgen-independent PC3 prostate cancer cells, the LSESr-induced effects on proliferation and apoptosis were evaluated by counting cells and using a FACScan cytofluorimeter. PC3 cells were stained with JC-1 dye to detect mitochondrial membrane potential. Cell membrane lipid composition was evaluated by thin layer chromatography and gas chromatographic analysis. Akt phosphorylation was analyzed by Western blotting and cellular ultrastructure through electron microscopy. LSESr (12.5 and 25 microg/ml) administration exerted a biphasic action by both inhibiting proliferation and stimulating apoptosis. After 1 h, it caused a marked reduction in the mitochondrial potential, decreased cholesterol content and modified phospholipid composition. A decrease in phosphatidylinositol-4,5-bisphosphate (PIP2) level was coupled with reduced Akt phosphorylation. After 24 h, all of these effects were restored to pre-treatment conditions; however, the saturated (SFA)/unsaturated fatty acid (UFA) ratio increased, mainly due to a significant decrease in omega 6 content. The reduction in cholesterol content could be responsible for both membrane raft disruption and redistribution of signaling complexes, allowing for a decrease of PIP2 levels, reduction of Akt phosphorylation and apoptosis induction. The decrease in omega 6 content appears to be responsible for the prolonged and more consistent increase in the apoptosis rate and inhibition of proliferation observed after 2-3 days of LSESr treatment. In conclusion, LSESr administration results in complex changes in cell membrane organization and fluidity of prostate cancer cells that have progressed to hormone-independent status.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources