Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;16(1):41-7.
doi: 10.1097/moh.0b013e32831ac517.

The roles of cathelicidin LL-37 in immune defences and novel clinical applications

Affiliations
Review

The roles of cathelicidin LL-37 in immune defences and novel clinical applications

Anastasia Nijnik et al. Curr Opin Hematol. 2009 Jan.

Abstract

Purpose of review: LL-37 is the only member of the cathelicidin family of host defence peptides expressed in humans. It is primarily produced by phagocytic leucocytes and epithelial cells, and mediates a wide range of biological responses: direct killing of microorganisms, chemotaxis and chemokine induction, regulation of inflammatory responses, as well as adjuvant, angiogenic and wound healing effects. In this review we will cover the recent advances in the understanding of LL-37 biology: its activities, the mechanisms of its induction and roles in immune defence.

Recent findings: Recent studies advanced our understanding of the mechanisms controlling LL-37 expression, demonstrating the key involvement of the vitamin D3 and the hypoxia response pathways, and the impacts of commensal and pathogenic microorganisms on its production. The synergistic and antagonistic interactions between LL-37 and other immune mediators have been further elucidated. Furthermore, studies in animal models and human patients further characterized the roles of cathelicidins in immunity, with roles in infectious and inflammatory conditions. The underlying properties of LL-37 have been exploited to create innate defence regulator peptides that represent a novel immunomodulatory approach to treating infections.

Summary: The understanding of the biological properties and functions of LL-37 and other host defence peptides advances our knowledge of innate immunity, the interactions of the host with pathogens and the microflora, as well as the pathology of infectious and inflammatory diseases, creating many strategies and opportunities for therapeutic intervention.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources