Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May;19(5):480-6.
doi: 10.1002/hipo.20533.

Long-term deficits on a foraging task after bilateral vestibular deafferentation in rats

Affiliations

Long-term deficits on a foraging task after bilateral vestibular deafferentation in rats

Yiwen Zheng et al. Hippocampus. 2009 May.

Abstract

Animal studies have shown that bilateral vestibular deafferentation (BVD) causes deficits in spatial memory that may be related to electrophysiological and neurochemical changes in the hippocampus. Recently, human studies have also indicated that human patients can exhibit spatial memory impairment and hippocampal atrophy even 8-10 yr following BVD. Our previous studies have shown that rats with unilateral vestibular deafferentation (UVD) showed an impairment at 3 months after the surgery on a food foraging task that relies on hippocampal integration of egocentric cues, such as vestibular information; however, by 6 months postop, they showed a recovery of function. By contrast, the long-term effects of BVD on spatial navigation have never been well studied. In this study, we tested BVD or sham rats on a food foraging task at 5 months postop. Under light conditions, BVD rats were able to use visual cues to guide themselves home, but did so with a significantly longer homing time. However, in darkness, BVD rats were severely impaired in the foraging task, as indicated by a significantly longer homing distance and homing time, with more errors and larger heading angles when compared with sham rats. These results suggest that, unlike UVD, BVD causes long-term deficits in spatial navigation that are unlikely to recover, even with repeated T-maze training.

PubMed Disclaimer

Publication types

LinkOut - more resources