Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;1788(1):194-201.
doi: 10.1016/j.bbamem.2008.11.010. Epub 2008 Nov 25.

How the molecular features of glycosphingolipids affect domain formation in fluid membranes

Affiliations
Free article
Review

How the molecular features of glycosphingolipids affect domain formation in fluid membranes

Bodil Westerlund et al. Biochim Biophys Acta. 2009 Jan.
Free article

Abstract

Glycosphingolipids, sphingomyelin and cholesterol are often all found in the detergent resistant fraction of biological membranes and are therefore recognized as raft components, but they do not necessarily co-localize in the same lateral domains. From cell biological studies it is evident that different sphingolipid species can be found in different lateral regions within the same cellular membrane. Biophysical studies have shown that their tendency to co-localize with each other and with other membrane components is largely governed by structural features of all lipids present. Glycosphingolipids form gel-phase like domains in fluid lipid bilayers. Sphingomyelin readily associates with cholesterol, forming liquid-ordered phase domains, but glycosphingolipids do not readily form cholesterol-enriched domains by themselves. However, mixed sphingomyelin- and glycosphingolipid-rich domains appear to incorporate cholesterol. Recent studies indicate that the ceramide backbone structure as well as the number of sugar units and presence of charge in the glycosphingolipid head group will influence the partitioning of these lipids between lateral membrane domains. The properties of the domains will be largely influenced by the presence of glycosphingolipids, which have very high melting temperatures. The lateral partitioning of glycosphingolipid molecular species has only recently been studied more intensively, and a lot remains to be done in this field of research.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources