Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan;30(1):1-9.
doi: 10.1016/j.neuro.2008.11.007. Epub 2008 Nov 27.

Upregulation of cellular glutathione by 3H-1,2-dithiole-3-thione as a possible treatment strategy for protecting against acrolein-induced neurocytotoxicity

Affiliations

Upregulation of cellular glutathione by 3H-1,2-dithiole-3-thione as a possible treatment strategy for protecting against acrolein-induced neurocytotoxicity

Zhenquan Jia et al. Neurotoxicology. 2009 Jan.

Abstract

Acrolein, an unsaturated aldehydic product of lipid peroxidation, has been implicated in the pathogenesis of various neurodegenerative disorders including Parkinson's disease. However, protection against acrolein toxicity in neuronal cells via chemical upregulation of cellular aldehyde-detoxification factors has not been investigated. In this study, we have investigated the induction of glutathione (GSH), GSH S-transferase (GST), and aldose reductase (AR) by the unique nutraceutical compound 3H-1,2-dithiole-3-thione (D3T); and the protective effects of the D3T-mediated cellular defenses on acrolein-mediated toxicity in human neuroblastoma SH-SY5Y cells. Incubation of SH-SY5Y cells with D3T (10-100 microM) resulted in a marked concentration- and time-dependent induction of GSH, but not GST or AR. D3T treatment also led to increased mRNA expression of gamma-glutamylcysteine ligase (GCL), the key enzyme in GSH biosynthesis. Incubation of SH-SY5Y cells with 40 microM acrolein for 0.5 or 1 h resulted in a significant depletion of cellular GSH, which preceded the decrease of cell viability, suggesting critical involvement of GSH in acrolein-induced cytotoxicity. Pretreatment of SH-SY5Y cells with 100 microM D3T afforded a dramatic protection against acrolein-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction, lactate dehydrogenase release, as well as morphological changes. To further demonstrate the involvement of GSH in protection against acrolein-induced cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. Depletion of cellular GSH by 25 microM BSO dramatically potentiated acrolein-induced cytotoxicity. Cotreatment of SH-SY5Y cells with BSO and D3T was found to prevent the D3T-mediated GSH induction and completely reverse the cytoprotective effects of D3T on acrolein-induced toxicity. Taken together, this study demonstrates that upregulation of GSH is a predominant mechanism underlying D3T-mediated protection against acrolein-induced neurocytotoxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources