Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb 6;284(6):3762-7.
doi: 10.1074/jbc.M808548200. Epub 2008 Dec 10.

Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase

Affiliations
Free article

Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase

Derren J Heyes et al. J Biol Chem. .
Free article

Abstract

In chlorophyll biosynthesis, the light-activated enzyme protochlorophyllide oxidoreductase catalyzes trans addition of hydrogen across the C-17-C-18 double bond of the chlorophyll precursor protochlorophyllide (Pchlide). This unique light-driven reaction plays a key role in the assembly of the photosynthetic apparatus, but despite its biological importance, the mechanism of light-activated catalysis is unknown. In this study, we show that Pchlide reduction occurs by dynamically coupled nuclear quantum tunneling of a hydride anion followed by a proton on the microsecond time scale in the Pchlide excited and ground states, respectively. We demonstrate the need for fast dynamic searches to form degenerate "tunneling-ready" configurations within the lifetime of the Pchlide excited state from which hydride transfer occurs. Moreover, we have found a breakpoint at -27 degrees C in the temperature dependence of the hydride transfer rate, which suggests that motions/vibrations that are important for promoting light-activated hydride tunneling are quenched below -27 degrees C. We observed no such breakpoint for the proton-tunneling reaction, indicating a reliance on different promoting modes for this reaction in the enzyme-substrate complex. Our studies indicate that the overall photoreduction of Pchlide is endothermic and that rapid dynamic searches are required to form distinct tunneling-ready configurations within the lifetime of the photoexcited state. Consequently, we have established the first important link between photochemical and nuclear quantum tunneling reactions, linked to protein dynamics, in a biologically significant system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources