Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug 1;88(15):6731-5.
doi: 10.1073/pnas.88.15.6731.

Expression of the human apolipoprotein A-I gene in transgenic mice alters high density lipoprotein (HDL) particle size distribution and diminishes selective uptake of HDL cholesteryl esters

Affiliations

Expression of the human apolipoprotein A-I gene in transgenic mice alters high density lipoprotein (HDL) particle size distribution and diminishes selective uptake of HDL cholesteryl esters

T Chajek-Shaul et al. Proc Natl Acad Sci U S A. .

Abstract

Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 +/- 2 and 137 +/- 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 +/- 2, 255 +/- 19, and 16 +/- 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to be primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with [3H]cholesteryl linoleyl ether (representing the cholesteryl ester pool) and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester (0.197 +/- 0.010 pool/hr) was significantly (P less than 0.0005) more than the apo A-I FCR (0.118 +/- 0.006 pool/hr). In the HuAITg mice, the HDL cholesteryl ester FCR (0.124 +/- 0.008 pool/hr) was the same as the apo A-I FCR (0.126 +/- 0.010 pool/hr). There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice. These data imply that apo A-I primary structure has a profound influence on HDL particle size distribution and metabolism.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1958 Jul 5;182(4627):53 - PubMed
    1. Biochim Biophys Acta. 1972 Feb 21;260(2):212-21 - PubMed
    1. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):434-8 - PubMed
    1. J Clin Invest. 1991 Jan;87(1):331-46 - PubMed
    1. Arteriosclerosis. 1989 Nov-Dec;9(6):785-97 - PubMed

Publication types

MeSH terms