Plasmin in nephrotic urine activates the epithelial sodium channel
- PMID: 19073825
- PMCID: PMC2637049
- DOI: 10.1681/ASN.2008040364
Plasmin in nephrotic urine activates the epithelial sodium channel
Abstract
Proteinuria and increased renal reabsorption of NaCl characterize the nephrotic syndrome. Here, we show that protein-rich urine from nephrotic rats and from patients with nephrotic syndrome activate the epithelial sodium channel (ENaC) in cultured M-1 mouse collecting duct cells and in Xenopus laevis oocytes heterologously expressing ENaC. The activation depended on urinary serine protease activity. We identified plasmin as a urinary serine protease by matrix-assisted laser desorption/ionization time of-flight mass spectrometry. Purified plasmin activated ENaC currents, and inhibitors of plasmin abolished urinary protease activity and the ability to activate ENaC. In nephrotic syndrome, tubular urokinase-type plasminogen activator likely converts filtered plasminogen to plasmin. Consistent with this, the combined application of urokinase-type plasminogen activator and plasminogen stimulated amiloride-sensitive transepithelial sodium transport in M-1 cells and increased amiloride-sensitive whole-cell currents in Xenopus laevis oocytes heterologously expressing ENaC. Activation of ENaC by plasmin involved cleavage and release of an inhibitory peptide from the ENaC gamma subunit ectodomain. These data suggest that a defective glomerular filtration barrier allows passage of proteolytic enzymes that have the ability to activate ENaC.
Figures











Comment in
-
Plasmin and sodium retention in nephrotic syndrome.J Am Soc Nephrol. 2009 Feb;20(2):233-4. doi: 10.1681/ASN.2008121236. Epub 2009 Jan 28. J Am Soc Nephrol. 2009. PMID: 19176698 No abstract available.
References
-
- Deschenes G, Doucet A: Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes. J Am Soc Nephrol 11: 604–615, 2000 - PubMed
-
- Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC: Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463–467, 1994 - PubMed
-
- Ecelbarger CA, Kim GH, Terris J, Masilamani S, Mitchell C, Reyes I, Verbalis JG, Knepper MA: Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. Am J Physiol Renal Physiol 279: F46–F53, 2000 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical