Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:177-85.
doi: 10.1182/asheducation-2008.1.177.

Mechanisms of vasculopathy in sickle cell disease and thalassemia

Affiliations
Review

Mechanisms of vasculopathy in sickle cell disease and thalassemia

Claudia R Morris. Hematology Am Soc Hematol Educ Program. 2008.

Abstract

Many mechanisms contribute to the complex pathophysiology of sickle cell disease (SCD), with dysfunction of the vascular endothelium as a unifying theme. Specifically, hemolysis-associated low arginine and nitric oxide (NO) bioavailability, amplified by NO synthase uncoupling, elevated arginase activity, superoxide production, oxidative stress, accumulation of arginine analogs such as asymmetric dimethylarginine, ischemia-reperfusion injury, inflammation, apolipoprotein A-1 depletion, and a hypercoagulable state are significant mechanisms contributing to endothelial dysfunction. Genetic polymorphisms also influence disease severity. Clearly the variable spectrum of disease is the consequence of multiple events and genetic susceptibility that go beyond the occurrence of a single amino acid substitution in the beta globin chain of hemoglobin. Recent studies begin to demonstrate overlap among these seemingly unrelated processes. Impaired NO bioavailability represents the central feature of endothelial dysfunction, and is a common denominator in the pathogenesis of vasculopathy in SCD. The consequences of decreased NO bioavailability include endothelial cell activation, upregulation of the potent vasoconstrictor endothelin-1, vasoconstriction, platelet activation, increased tissue factor, and activation of coagulation, all of which ultimately translate into the clinical manifestations of SCD. Evidence supporting vasculopathy subphenotypes in SCD, including pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke, will be reviewed and relevance to other hemolytic disorders including the thalassemia syndromes will be considered.

PubMed Disclaimer

MeSH terms