Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 6;284(10):6554-65.
doi: 10.1074/jbc.M807746200. Epub 2008 Dec 11.

Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease

Affiliations
Free article

Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease

Said AbdAlla et al. J Biol Chem. .
Free article

Abstract

Progressive neurodegeneration and decline of cognitive functions are major hallmarks of Alzheimer disease (AD). Neurodegeneration in AD correlates with dysfunction of diverse signal transduction mechanisms, such as the G-protein-stimulated phosphoinositide hydrolysis mediated by Galphaq/11. We report here that impaired Galphaq/11-stimulated signaling in brains of AD patients and mice correlated with the appearance of cross-linked oligomeric angiotensin II AT2 receptors sequestering Galphaq/11. Amyloid beta (Abeta) was causal to AT2 oligomerization, because cerebral microinjection of Abeta triggered AT2 oligomerization in the hippocampus of mice in a dose-dependent manner. Abeta induced AT2 oligomerization by a two-step process of oxidative and transglutaminase-dependent cross-linking. The induction of AT2 oligomers in a transgenic mouse model with AD-like symptoms was associated with Galphaq/11 dysfunction and enhanced neurodegeneration. Vice versa, stereotactic inhibition of AT2 oligomers by RNA interference prevented the impairment of Galphaq/11 and delayed Tau phosphorylation. Thus, Abeta induces the formation of cross-linked AT2 oligomers that contribute to the dysfunction of Galphaq/11 in an animal model of Alzheimer disease.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances