Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;29(2):232-8.
doi: 10.1161/ATVBAHA.108.179457. Epub 2008 Dec 12.

mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors

Affiliations

mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors

Björn Hegner et al. Arterioscler Thromb Vasc Biol. 2009 Feb.

Abstract

Objective: Vascular smooth muscle cells (VSMCs) and circulating mesenchymal progenitor cells (MSCs) with a VSMC phenotype contribute to neointima formation and lumen loss after angioplasty and during allograft arteriosclerosis. We hypothesized that phosphoinositol-Akt-mammalian target of rapamycin-p70S6 kinase (PI3K/Akt/mTOR/p70S6K) pathway activation regulates VSMC differentiation from MSCs.

Methods and results: We studied effects of PI3K/Akt/mTOR signaling on phenotypic modulation of MSC and VSMC marker expression, including L-type Ca(2+) channels. Phosphorylation of Akt and p70S6K featured downregulation of VSMC markers in dedifferentiated MSCs. mTOR inhibition with rapamycin at below pharmacological concentrations blocked p70S6K phosphorylation and induced a differentiated contractile phenotype with smooth muscle (sm)-calponin, sm-alpha-actin, and SM protein 22-alpha (SM22alpha) expression. The PI3K inhibitor Ly294002 abolished Akt and p70S6K phosphorylation and reversed the dedifferentiated phenotype via induction of sm-calponin, sm-alpha-actin, SM22alpha, and myosin light chain kinase. Rapamycin acted antiproliferative without impairing MSC viability. In VSMCs, rapamycin increased a homing chemokine for MSCs, stromal cell-derived factor-1-alpha, at mRNA and protein levels. The CXCR4-mediated MSC migration toward conditioned medium of rapamycin-treated VSMCs was enhanced.

Conclusions: We describe novel pleiotropic effects of rapamycin at very low concentrations that stabilized differentiated contractile VSMCs from MSCs in addition to exerting antiproliferative and enhanced homing effects.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources