The PIK3CA gene as a mutated target for cancer therapy
- PMID: 19075596
- PMCID: PMC2831175
- DOI: 10.2174/156800908786733504
The PIK3CA gene as a mutated target for cancer therapy
Abstract
The development of targeted therapies with true specificity for cancer relies upon exploiting differences between cancerous and normal cells. Genetic and genomic alterations including somatic mutations, translocations, and amplifications have served as recent examples of how such differences can be exploited as effective drug targets. Small molecule inhibitors and monoclonal antibodies directed against the protein products of these genetic anomalies have led to cancer therapies with high specificity and relatively low toxicity. Recently, our group and others have demonstrated that somatic mutations in the PIK3CA gene occur at high frequency in breast and other cancers. Moreover, the majority of mutations occur at three hotspots, making these ideal targets for therapeutic development. Here we review the literature on PIK3CA mutations in cancer, as well as existing data on PIK3CA inhibitors and inhibitors of downstream effectors for potential use as targeted cancer therapeutics.
Conflict of interest statement
J.P.G. and D.P.C. declare no conflict of interests. B.H.P. receives support from GlaxoSmithKline under the terms regulated by The Johns Hopkins University policies on conflicts of interest.
Figures

Similar articles
-
PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors.Mol Cancer Ther. 2011 Mar;10(3):558-65. doi: 10.1158/1535-7163.MCT-10-0994. Epub 2011 Jan 7. Mol Cancer Ther. 2011. PMID: 21216929 Free PMC article.
-
PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations.J Clin Oncol. 2012 Mar 10;30(8):777-82. doi: 10.1200/JCO.2011.36.1196. Epub 2012 Jan 23. J Clin Oncol. 2012. PMID: 22271473 Free PMC article.
-
Target-based therapeutic matching in early-phase clinical trials in patients with advanced colorectal cancer and PIK3CA mutations.Mol Cancer Ther. 2013 Dec;12(12):2857-63. doi: 10.1158/1535-7163.MCT-13-0319-T. Epub 2013 Oct 3. Mol Cancer Ther. 2013. PMID: 24092809 Free PMC article.
-
PIK3CA mutations matter for cancer in dogs.Res Vet Sci. 2020 Dec;133:39-41. doi: 10.1016/j.rvsc.2020.09.001. Epub 2020 Sep 8. Res Vet Sci. 2020. PMID: 32932196 Review.
-
KRAS mutated colorectal cancers with or without PIK3CA mutations: Clinical and molecular profiles inform current and future therapeutics.Crit Rev Oncol Hematol. 2023 Jun;186:103987. doi: 10.1016/j.critrevonc.2023.103987. Epub 2023 Apr 13. Crit Rev Oncol Hematol. 2023. PMID: 37059275 Review.
Cited by
-
Power and sample size calculations for high-throughput sequencing-based experiments.Brief Bioinform. 2018 Nov 27;19(6):1247-1255. doi: 10.1093/bib/bbx061. Brief Bioinform. 2018. PMID: 28605403 Free PMC article.
-
De-regulation of aurora kinases by oncogenic HPV; implications in cancer development and treatment.Tumour Virus Res. 2025 Jun;19:200314. doi: 10.1016/j.tvr.2025.200314. Epub 2025 Feb 7. Tumour Virus Res. 2025. PMID: 39923999 Free PMC article. Review.
-
Phosphatidylinositol-3-kinase α catalytic subunit gene somatic mutations in bronchopulmonary neuroendocrine tumours.Oncol Rep. 2012 Nov;28(5):1559-66. doi: 10.3892/or.2012.2017. Epub 2012 Sep 4. Oncol Rep. 2012. PMID: 22949056 Free PMC article.
-
Oncogene mutational profile in nasopharyngeal carcinoma.Onco Targets Ther. 2014 Mar 20;7:457-67. doi: 10.2147/OTT.S58791. eCollection 2014. Onco Targets Ther. 2014. PMID: 24672248 Free PMC article.
-
Nasopharyngeal Carcinoma Progression: Accumulating Genomic Instability and Persistent Epstein-Barr Virus Infection.Curr Oncol. 2022 Aug 23;29(9):6035-6052. doi: 10.3390/curroncol29090475. Curr Oncol. 2022. PMID: 36135044 Free PMC article. Review.
References
-
- O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ, Durrant S, Schwarer A, Joske D, Seymour J, Grigg A, Ma D, Arthur C, Bradstock K, Joshua D, Louwagie A, Martiat P, Straetmans N, Bosly A, Shustik C, Lipton J, Forrest D, Walker I, Roy DC, Rubinger M, Bence-Bruckler I, Kovacs M, Turner AR, Birgens H, Bjerrum O, Facon T, Harousseau JL, Tulliez M, Guerci A, Blaise D, Maloisel F, Michallet M, Hossfeld D, Mertelsmann R, Andreesen R, Nerl C, Freund M, Gattermann N, Hoeffken K, Ehninger G, Deininger M, Ottmann O, Peschel C, Fruehauf S, Neubauer A, Le Coutre P, Aulitzky W, Fanin R, Rosti G, Mandelli F, Morra E, Carella A, Lazzarino M, Petrini M, Ferrini PR, Nobile F, Liso V, Ferrara F, Rizzoli V, Fioritoni G, Martinelli G, Ossenkoppele G, Browett P, Gedde-Dahl T, Tangen JM, Dahl I, Odriozola J, Boluda JCH, Steegmann JL, Canizo C, Sureda A, Diaz J, Granena A, Fernandez MN, Stenke L, Paul C, Bjoreman M, Malm C, Wadenvik H, Nilsson PG, Turesson I, Hess U, Solenthaler M, Russel N, Mufti G, Cavenagh J, Clark RE, Green AR, Holyoake TL, Lucas GS, Smith G, Milligan DW, Rule SJ, Burnett AK, Moroose R, Wetzler M, Bearden J, Brown R, Lobell M, Cataland S, Rabinowitz I, Meisenberg B, Gabrilove J, Thompson K, Graziano S, Emanuel P, Gross H, Cobb P, Bhatia R, Dakhil S, Irwin D, Issell B, Pavletic S, Kuebler P, Layhe E, Butera P, Glass J, Moore J, Grant B, Niell H, Herzig R, Burris H, Peterson B, Powell B, Kalaycio M, Stirewalt D, Samlowski W, Berman E, Limentani S, Seay T, Shea T, Akard L, Becker P, DeVine S, Hart R, Veith R, Wade J, Brunvand M, Silver R, Kalman L, Strickland D, Shurafa M, Bashey A, Shadduck R, Cooper S, Safah H, Rubenstein M, Collins R, Keller A, Stone R, Tallman M, Stevens D, Pecora A, Agha M, Holmes H, Rowe J, Schiffer CA, Buyse M, Cornelissen J. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004. - PubMed
-
- Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500. - PubMed
-
- Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39. - PubMed
-
- Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–1684. - PubMed
-
- Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–1672. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous