Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;19(2):113-21.
doi: 10.1111/j.1600-0668.2008.00567.x. Epub 2008 Dec 10.

Survival of amoebae on building materials

Affiliations

Survival of amoebae on building materials

T Yli-Pirilä et al. Indoor Air. 2009 Apr.

Abstract

Moisture damage and concurrent microbial growth in buildings are associated with adverse health effects among the occupants. However, the causal agents for the symptoms are unclear although microbes are assumed to play a major role. Fungi and bacteria are not the only microbes inhabiting moist building materials; it was recently revealed that amoebae are also present. As amoebae have the potential to harbor many pathogens and to modulate the characteristics of growing microbes, a better appreciation of the growth and survival of amoebae in moisture damage conditions will add to the understanding of their effects on health outcomes. In this study, we investigated the ability of amoebae to survive on six building materials. Furthermore, both aged and unused materials were tested. Amoebae survived on gypsum board and mineral wool for the whole 2 months experiment even without additional sustenance. When sustenance (heat-killed bacteria) was available, aged pine wood and birch wood also allowed their survival. In contrast, amoebae were quickly killed on fresh pine wood and they did not survive on concrete or linoleum. In conclusion, our data show that amoebae can persist on several common building materials once these materials become wet.

Practical implications: Amoebae are able to survive on many building materials should the materials become wet. Amoebae have the potential to increase growth, cytotoxicity, and pathogenicity of other microbes present in moisture damages, and they may carry potentially pathogenic bacteria as endosymbionts and thus introduce them into the indoor air. Therefore, amoebae may have a prominent role in the microbial exposures occurring in moisture-damaged buildings. The presence of amoebae could be usefully included in reporting the microbial damage of material samples.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources