Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;18(1):28-32.
doi: 10.1097/MNH.0b013e32831a9e0b.

Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance

Affiliations
Review

Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance

John J Gildea. Curr Opin Nephrol Hypertens. 2009 Jan.

Abstract

Purpose of review: To review the recent evidence demonstrating how the renal dopaminergic and angiotensin systems control renal electrolyte balance through various receptor-mediated pathways with counterregulatory interactions.

Recent findings: Stimulation of the renal rennin-angiotensin system results in increased sodium reabsorption, whereas the opposite is true for stimulation of the renal dopaminergic system. An underactive renal dopaminergic system has been associated with increased sodium reabsorption and hypertension. Recent findings indicate novel cell surface receptor-mediated mechanisms by which these two renal endocrine systems directly counterregulate each other. Each of the dopamine receptors (D1R through D5R) have been implicated in dopamine-mediated natriuresis, in addition to counterregulating the angiotensin type 1 R. Dopamine D1-like (D1R and D5R) stimulation has also been found to induce an AT2 receptor- dependent natriuresis. Recently, it has also been discovered that reactive oxygen species can play a role in inactivating the D1 receptor and activating the angiotensin type 1 R.

Summary: Current therapeutic interventions for hypertension predominantly involve correction of an overactive rennin-angiotensin aldosterone system. Recent evidence suggests that stimulation of the renal dopaminergic system and possibly activation of AT2 receptors, as well as decreasing reactive oxygen species, may provide additional therapeutic approaches.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. Nat Clin Pract Nephrol. 2006;2:637–650. - PubMed
    1. Sheikh-Hamad D, Wang YP, Jo OD, Yanagawa N. Dopamine antagonizes the actions of angiotensin II in renal brush-border membrane. Am J Physiol. 1993;264:F737–743. - PubMed
    1. Cheng HF, Becker BN, Harris RC. Dopamine decreases expression of type-1 angiotensin II receptors in renal proximal tubule. J Clin Invest. 1996;97:2745–2752. - PMC - PubMed
    1. Zeng C, Yang Z, Wang Z, Jones J, Wang X, Altea J, Mangrum AJ, Hopfer U, Sibley DR, Eisner GM, et al. Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension. 2005;45:804–810. - PubMed
    1. Gildea JJ, Wang X, Jose PA, Felder RA. Differential D1 and D5 receptor regulation and degradation of the angiotensin type 1 receptor. Hypertension. 2008;51:360–366. This paper shows that the dopamine D5 receptor is the receptor responsible for the dopamine D1-like stimulated proteasomal and c-src dependent degradation of the AT1R receptors. This paper also show that this pathway occurs in adenylyl cyclase uncoupled cells. - PubMed