Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 11;456(7223):773-7.
doi: 10.1038/nature07607.

A solid-state light-matter interface at the single-photon level

Affiliations

A solid-state light-matter interface at the single-photon level

Hugues de Riedmatten et al. Nature. .

Abstract

Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is an essential requirement for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and with single trapped atoms in cavities. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of approximately 10(7) atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid-state atomic medium. The state of the light is mapped onto collective atomic excitations at an optical transition and stored for a pre-determined time of up to 1 mus before being released in a well-defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95 per cent are obtained, demonstrating the high coherence of the mapping process at the single-photon level. In addition, we show experimentally that our interface makes it possible to store and retrieve light fields in multiple temporal modes. Our results open the way to multimode solid-state quantum memories as a promising alternative to atomic gases.

PubMed Disclaimer

Publication types

LinkOut - more resources