Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 25;25(20):4731-4733.
doi: 10.1021/om0606791.

Zirconium Bis(Amido) Catalysts for Asymmetric Intramolecular Alkene Hydroamination

Affiliations

Zirconium Bis(Amido) Catalysts for Asymmetric Intramolecular Alkene Hydroamination

Donald A Watson et al. Organometallics. .

Abstract

In situ combination of diphosphinic amides and Zr(NMe(2))(4) results in the formation of chiral zirconium bis(amido) complexes. The complexes are competent catalysts for intramolecular asymmetric alkene hydroamintion, providing piperidines and pyrrolidines in up to 80% ee and high yield. This system utilizes an inexpensive zirconium precatalyst and readily prepared ligands and is the first asymmetric alkene hydroamination catalyst based upon a neutral zirconium bis(amido) complex.

PubMed Disclaimer

Figures

(1)
(1)
Figure 1
Figure 1
Structures of ligands examined.
Figure 2
Figure 2
ORTEP representation of the solid state structure of 21a. Arenes connected to P29 have been truncated for clarity. Thermal ellipsoids are shown at 50% probability.
Scheme 1
Scheme 1
Products from the reaction of diphosphinic amide ligands and Zr(NMe2)4.
Scheme 2
Scheme 2
Proposed catalytic cycle and catalyst decomposition.

References

    1. Gagne MR, Brard L, Conticello VP, Giardello MA, Stern CL, Marks TJ. Organometallics. 1992;11:2003–2005.
    1. For reviews of asymmetric hydroamination, see: (a) Togni, A.; Dorta, R.; Kollner, C.; Pioda, G. 1998, 70, 1477–1485.

    2. Togni A, Dorta R, Kollner C, Pioda G. 1998;70:1477–1485.
    3. Roesky PW, Muller TE. Angew Chem Int Ed. 2003;42:2708–2710. - PubMed
    4. Hong S, Marks TJ. Acc Chem Res. 2004;37:673–686. - PubMed
    5. Hultzsch KC. Org Biomol Chem. 2005;3:1819–1824. - PubMed
    6. Hultzsch KC. Adv Synth Catal. 2005;347:367–391.
    7. Hii KK. Pure Appl Chem. 2006;78:341–349.
    1. For recent reports of hydroaminations using lanthanum and Group 3 metal complexes, see:

    2. Kim JY, Livinghouse T. Org Lett. 2005;7:1737–1739. - PubMed
    3. Collin J, Daran J, Jacquet O, Schulz E, Trifonov A. Chem Eur J. 2005;11:3455–3462. - PubMed
    4. Birkov DV, Hultzsch KC, Hampel F. J Am Chem Soc. 2006;128:3748–3759. - PubMed
    5. Riegert D, Collin J, Meddour A, Schulz E, Trifonov A. J Org Chem. 2006;71:2514–2517. - PubMed
    1. For asymmetric hydroaminations using late metal catalysts, see:

    2. Löber O, Kawatsura M, Hartwig JF. J Am Chem Soc. 2001;123:4366–4367. - PubMed
    3. Patil NT, Lutete LM, Wu H, Pahadi NK, Gridnev ID, Yamamoto Y. J Org Chem. 2006;71:4270–4279. - PubMed
    1. For examples of asymmetric hydroaminations using other metals, including cationic zirconium complexes, see:

    2. Knight PD, Munslow I, O'Shaughnessy PN, Scott P. Chem Commun. 2004:894–895. - PubMed
    3. Gribkov DV, Hultzcsh KC. Angew Chem Int Ed. 2004;43:5542–5546. - PubMed
    4. Martinez PH, Hultzsch KC, Hampel F. Chem Commun. 2006:2221–2223. - PubMed

LinkOut - more resources