Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug 15;147(4):1406-11.

Predominance of nonproductive rearrangements of VH81X gene segments evidences a dependence of B cell clonal maturation on the structure of nascent H chains

Affiliations
  • PMID: 1907997

Predominance of nonproductive rearrangements of VH81X gene segments evidences a dependence of B cell clonal maturation on the structure of nascent H chains

D J Decker et al. J Immunol. .

Abstract

Ig H chain V regions using the VH81X gene segment were PCR amplified from genomic DNA obtained from either splenic B cells or surface (s)Ig- bone marrow cells of BALB/c mice. Sequence analysis demonstrated that 93% of VH81X containing H chain V region genes in splenic B cells were rearranged nonproductively. Furthermore, 74% of rearrangements of VH81X among sIg- bone marrow cells were nonproductive. This contrasts with previous results obtained for rearrangements of members of the VH36-60 gene segment family among sIg- cells wherein, as a consequence of extensive clonal expansion after productive H chain V gene rearrangement, 80% of rearrangements were productive. The low proportion of productive rearrangements of VH81X is interpreted as indicating that most productive rearrangements of VH81X cannot facilitate clonal expansion, which would support the hypothesis that selection for clonal expansion and maturation is dependent on the amino acid sequence of nascent H chains. Additionally, because most productive rearrangements of VH81X cannot facilitate clonal maturation but do appear to mediate allelic exclusion, these processes are likely to be regulated independently.

PubMed Disclaimer

Publication types

MeSH terms

Substances