Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:271:97-152.
doi: 10.1016/S1937-6448(08)01203-3.

Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings

Affiliations
Review

Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings

T Kuroiwa et al. Int Rev Cell Mol Biol. 2008.

Abstract

The original eukaryotic cells contained at least one set of double-membrane-bounded organelles (cell nucleus and mitochondria) and single-membrane-bounded organelles [endoplasmic reticulum, Golgi apparatus, lysosomes (vacuoles), and microbodies (peroxisomes)]. An increase in the number of organelles accompanied the evolution of these cells into Amoebozoa and Opisthokonta. Furthermore, the basic cells, containing mitochondria, engulfed photosynthetic Cyanobacteria, which were converted to plastids, and the cells thereby evolved into cells characteristic of the Bikonta. How did basic single- and double-membrane-bounded organelles originate from bacteria-like cells during early eukaryotic evolution? To answer this question, the important roles of the GTPase dynamin- and electron-dense rings in the promotion of diverse cellular activities in eukaryotes, including endocytosis, vesicular transport, mitochondrial division, and plastid division, must be considered. In this review, vesicle division, mitochondrial division, and plastid division machineries, including the dynamin- and electron-dense rings, and their roles in the origin and biogenesis of organelles in eukaryote cells are summarized.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources