Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov 21:(43):5977-91.
doi: 10.1039/b806100a. Epub 2008 Sep 24.

The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of eta(2)-N(2) on FeMo-co to NH(3)

Affiliations

The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of eta(2)-N(2) on FeMo-co to NH(3)

Ian Dance. Dalton Trans. .

Abstract

Using density functional calculations, a complete chemical mechanism has been developed for the reaction N(2) + 6e(-) + 6H(+)--> 2NH(3) catalyzed by the Fe(7)MoS(9)N(c)(homocitrate) cofactor (FeMo-co) of the enzyme nitrogenase. The mechanism is based on previous descriptions of the generation of H atoms on FeMo-co by proton relay through a protein path terminating in water molecule 679, and preserves the model (which explains much biochemical data) for vectorial migration of H atoms to two S atoms and two Fe atoms of FeMo-co. After calculation of the energy profiles for the many possible sequences of steps in which these H atoms are transferred to N(2) and its hydrogenated intermediates, a favourable pathway to 2NH(3) was developed. Transition states and activation potential energies for the 21 step mechanism are presented, together with results for some alternative branches. The mechanism develops logically from the eta(2)-coordination of N(2) at the endo position of one Fe atom of prehydrogenated FeMo-co, consistent with the previous kinetic-mechanistic scheme of Thorneley and Lowe, and passes through bound N(2)H(2) and N(2)H(4) intermediates. This mechanism is different from others in the literature because it uses a single replenishable path for serial supply of protons which become H atoms on FeMo-co, migrating to become S-H and Fe-H donors to N(2) and to the intermediates that follow. The new paradigm for the chemical catalysis is that hydrogenation of N(2) and intermediates is intramolecular and does not involve direct protonation from surrounding residues which appear to be unable to provide a replenishable supply of 6H(+). Many steps in this intramolecular hydrogenation are expected to be enhanced by H tunneling.

PubMed Disclaimer

Publication types

LinkOut - more resources