Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;26(2):459-68.
doi: 10.1007/s11095-008-9799-5. Epub 2008 Dec 11.

Metabolism and renal elimination of gaboxadol in humans: role of UDP-glucuronosyltransferases and transporters

Affiliations

Metabolism and renal elimination of gaboxadol in humans: role of UDP-glucuronosyltransferases and transporters

Xiao-Yan Chu et al. Pharm Res. 2009 Feb.

Abstract

Gaboxadol, a selective extrasynaptic agonist of the delta-containing gamma-aminobutyric acid type A (GABAA) receptor, is excreted in humans into the urine as parent drug and glucuronide conjugate. The goal of this study was to identify the UDP-Glucuronosyltransferase (UGT) enzymes and the transporters involved in the metabolism and active renal secretion of gaboxadol and its metabolite in humans.Methods. The structure of the glucuronide conjugate of gaboxadol in human urine was identified by LC/MS/MS. Human recombinant UGT isoforms were used to identify the enzymes responsible for the glucuronidation of gaboxadol. Transport of gaboxadol and its glucuronide was evaluated using cell lines and membrane vesicles expressing human organic anion transporters hOAT1 and hOAT3, organic cation transporter hOCT2, and the multidrug resistance proteins MRP2 and MRP4.Results. Our study indicated that the gaboxadol-O-glucuronide was the major metabolite excreted in human urine. UGT1A9, and to a lesser extent UGT1A6, UGT1A7 and UGT1A8, catalyzed the O-glucuronidation of gaboxadol in vitro. Gaboxadol was transported by hOAT1, but not by hOCT2, hOAT3, MRP2, and MRP4. Gaboxadol-O-glucuronide was transported by MRP4, but not MRP2.Conlusion. Gaboxadol could be taken up into the kidney by hOAT1 followed by glucuronidation and efflux of the conjugate into urine via MRP4.

PubMed Disclaimer

References

    1. Eur J Pharmacol. 2007 May 7;562(1-2):47-52 - PubMed
    1. Nephron Physiol. 2006;103(3):p97-106 - PubMed
    1. J Pharmacol Exp Ther. 2004 Apr;309(1):156-64 - PubMed
    1. Trends Pharmacol Sci. 2006 Nov;27(11):587-93 - PubMed
    1. Xenobiotica. 1989 Dec;19(12):1399-406 - PubMed

MeSH terms

LinkOut - more resources