Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;179(2):472-483.
doi: 10.1111/j.1469-8137.2008.02491.x.

Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition

Affiliations
Free article

Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition

P G Avis et al. New Phytol. 2008 Jul.
Free article

Abstract

How nitrogen (N) deposition impacts ectomycorrhizal (EM) fungal communities has been little studied in deciduous forests or across spatial scales. Here, it was tested whether N addition decreases species richness and shifts species composition across spatial scales in temperate deciduous oak forests. Combined molecular (terminal restriction fragment length polymorphism (T-RFLP), sequencing) and morphological approaches were used to measure EM fungal operational taxon unit (OTU) richness, community structure and composition at the spatial scale of the root, soil core and forest during a 3-yr N fertilization experiment in Quercus-dominated forests near Chicago, IL, USA. In N treatments, significantly lower OTU richness at the largest but not smaller spatial scales and a different community structure were detected. The effects of N appeared to be immediate, not cumulative. Ordination indicated the composition of EM fungal communities was determined by forest site and N fertilization. The EM fungi responded to a N increase that was low compared with other fertilization studies, suggesting that moderate increases in N deposition can affect EM fungal communities at larger spatial scales in temperate deciduous ecosystems. While responses at large spatial scales indicate that environmental factors can drive changes in these communities, untangling the impacts of abiotic from biotic factors remain limited by detection issues.

PubMed Disclaimer

References

    1. Aber J, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48: 921-934.
    1. Agerer R. 198796. Colour atlas of ectomycorrhizae. Schwabish Gmund, Germany: Einhorn-Verlag Eduard Dietenberger.
    1. Avis PG. 2003. The effects of long-term nitrogen fertilization on the ectomycorrhizal communities of a temperate deciduous ecosystem. PhD thesis. St. Paul, MN, USA: University of Minnesota.
    1. Avis PG, Dickie IA, Mueller GM. 2006. A ‘dirty’ business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Molecular Ecology 15: 873-882.
    1. Avis PG, McLaughlin DJ, Dentinger BC, Reich PB. 2003. Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytologist 160: 239-253.

Publication types

LinkOut - more resources