Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 16:5:34.
doi: 10.1186/1743-0003-5-34.

Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis

Affiliations

Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis

Kristina M Calder et al. J Neuroeng Rehabil. .

Abstract

Background: The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i) if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG) signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE) and/or control subjects and (ii) if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature.

Methods: Sixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG). Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB) muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs), and needle-detected motor unit potential (MUP) and surface detected motor unit potential (SMUP) morphology and motor unit (MU) firing rates were compared among the four groups using one-way analysis of variance (ANOVA). Post hoc analyses were performed using Tukey's pairwise comparisons.

Results: Significant group differences were found for all MUP variables and for MU firing rate (p < 0.006). The post-hoc analyses revealed that patients with NSAP had smaller MUP amplitude and SMUP amplitude and area compared to the control and LE groups (p < 0.006). MUP duration and AAR values were significantly larger in the NSAP, LE and at-risk groups compared to the control group (p < 0.006); while MUP amplitude, duration and AAR values were smaller in the NSAP compared to the LE group. SMUP duration was significantly shorter in the NSAP group compared to the control group (p < 0.006). NSAP, LE and at-risk subjects had lower mean MU firing rates than the control subjects (p < 0.006).

Conclusion: The size-related parameters suggest that the NSAP group had significantly smaller MUPs and SMUPs than the control and LE subjects. Smaller MUPs and SMUPs may be indicative of muscle fiber atrophy and/or loss. A prospective study is needed to confirm any causal relationship between smaller MUPs and SMUPs and NSAP as found in this work.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Experimental set-up and electrode position. The active electrode (A) was placed over the motor point of the ECRB muscle. The passive electrode was placed over the radial styloid process (B). The common reference electrode was placed on the dorsum of the hand (C). A concentric needle electrode (D) was inserted in a distal to proximal direction parallel to the muscle fibers so that the tip of the needle was underneath the active electrode (A).

References

    1. Larsson SE, Bengtsson A, Bodegard L, Henriksson KG, Larsson J. Muscle changes in work-related chronic myalgia. Acta Orthop Scand. 1988;59:552–556. - PubMed
    1. Hagberg M, Wegman DH. Prevalence rates and odds ratios of shoulder-neck diseases in different occupational groups. Br J Ind Med. 1987;44:602–610. - PMC - PubMed
    1. Veiersted KB, Westgaard RH. Development of trapezius myalgia among female workers performing light manual work. Scand J Work Environ Health. 1993;19:277–283. - PubMed
    1. Harrington JM, Carter JT, Birrell L, Gompertz D. Surveillance case definitions for work related upper limb pain syndromes. Occup Environ Med. 1998;55:264–271. doi: 10.1136/oem.55.4.264. - DOI - PMC - PubMed
    1. Byng J. Overuse syndromes of the upper limb and the upper limb tension test: a comparison between patients, asymptomatic keyboard workers and asymptomatic non-keyboard workers. Man Ther. 1997;2:157–164. doi: 10.1054/math.1997.0296. - DOI - PubMed

Publication types