Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1976 May 31;60(6):737-48.
doi: 10.1016/0002-9343(76)90888-3.

The biochemistry of the renin-angiotensin system and its role in hypertension

Review

The biochemistry of the renin-angiotensin system and its role in hypertension

L T Skeggs et al. Am J Med. .

Abstract

The renin-angiotensin system has an important role in maintaining elevated blood pressure levels in certain forms of experimental and human hypertension. Renin, an enzyme produced by the juxtaglomerular cells of the kidney, acts on a protein substrate found in the alpha 2-globulin fraction of the plasma to produce a decapeptide, angiotensin I. This decapeptide is not directly pressor, but on passage through the pulmonary circulation is converted to an octapeptide, angiotensin II, a very potent pressor substance which acts by causing constriction of arteriolar smooth muscle. In addition to its direct action which increases blood pressure, angiotensin II acts on the adrenal cortex to cause the release of the sodium-retaining hormone aldosterone. Recent evidence suggests that this action may be mediated by the heptapeptide, angiotensin III. Both renin and its protein substrate exist in multiple forms and renin may also exist as a high molecular-weight "pro-hormone," although the physiologic significance of these forms is not clear. The elucidation of the biochemistry of the renin-angiotensin system has provided us with inhibitors which allow the system to be blocked effectively in vivo. Thus, angiotensin antagonists such as Sar 1, IIe 8-angiotensin II and converting enzyme inhibitors such as BPP 9a (SQ 20881) have proved useful in the study of experimental and human hypertension.

PubMed Disclaimer

LinkOut - more resources