Adiponectin translation is increased by the PPARgamma agonists pioglitazone and omega-3 fatty acids
- PMID: 19088251
- PMCID: PMC2660148
- DOI: 10.1152/ajpendo.90892.2008
Adiponectin translation is increased by the PPARgamma agonists pioglitazone and omega-3 fatty acids
Abstract
Adiponectin, made exclusively by adipocytes, is a 30-kDa secretory protein assembled posttranslationally into low-molecular weight, middle-molecular weight, and high-molecular weight homo-oligomers. PPARgamma ligand thiozolidinediones, which are widely used in the treatment of type II diabetes, increase adiponectin levels. PPARgamma also has several putative ligands that include fatty acid derivatives. Overnight treatment of rat adipocytes with pioglitazone, docosahexaenoic acid (DHA), or eicosapentaenoic acid (EPA) triggered a twofold increase in the synthesis and secretion of HMW adiponectin, and this increase was blocked by the addition of PPARgamma inhibitor GW-9662. Inhibition of glycosylation using 2,2'-dipyridyl decreased the synthesis of high-molecular weight adiponectin by pioglitazone, EPA, and DHA, but there was increased secretion of trimeric adiponectin resulting from increased translation. Although pioglitazone, DHA, and EPA increased adiponectin synthesis by more than 60%, there was no increase in total protein synthesis and no corresponding change in adiponectin mRNA expression, indicating the upregulation of translation. We examined the possibility of transacting factors in the cytoplasmic extracts from adipocytes treated with pioglitazone or DHA. In vitro translation of adiponectin mRNA was inhibited by S-100 fraction of control adipocytes and increased by S-100 extracts from adipocytes treated with pioglitazone or DHA. Consistent with this observation, both pioglitazone and DHA treatments increased the association of adiponectin mRNA with the heavier polysome fractions. Together, these data suggest that pioglitazone and the fish oils DHA or EPA are PPARgamma agonists in adipocytes with regard to adiponectin expression, and the predominant mode of adiponectin stimulation is via an increase in translation.
Figures







References
-
- Bodles AM, Banga A, Rasouli N, Ono F, Kern PA, Owens RJ. Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes. Am J Physiol Endocrinol Metab 291: E1100–E1105, 2006. - PubMed
-
- Deckelbaum RJ, Worgall TS, Seo T. n-3 fatty acids and gene expression. Am J Clin Nutr 83: 1520S–1525S, 2006. - PubMed
-
- Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell 3: 127–133, 1974. - PubMed
-
- Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271: 10697–10703, 1996. - PubMed
-
- Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X, Tanaka M, Kawano H, Yano T, Aoe S, Takeya M, Shimatsu A, Kuzuya H, Kamei Y, Ogawa Y. Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler Thromb Vasc Biol 27: 1918–1925, 2007. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials