Multifunctional 3D nanoarchitectures for energy storage and conversion
- PMID: 19088976
- DOI: 10.1039/b801151f
Multifunctional 3D nanoarchitectures for energy storage and conversion
Abstract
The design and fabrication of three-dimensional multifunctional architectures from the appropriate nanoscale building blocks, including the strategic use of void space and deliberate disorder as design components, permits a re-examination of devices that produce or store energy as discussed in this critical review. The appropriate electronic, ionic, and electrochemical requirements for such devices may now be assembled into nanoarchitectures on the bench-top through the synthesis of low density, ultraporous nanoarchitectures that meld high surface area for heterogeneous reactions with a continuous, porous network for rapid molecular flux. Such nanoarchitectures amplify the nature of electrified interfaces and challenge the standard ways in which electrochemically active materials are both understood and used for energy storage. An architectural viewpoint provides a powerful metaphor to guide chemists and materials scientists in the design of energy-storing nanoarchitectures that depart from the hegemony of periodicity and order with the promise--and demonstration--of even higher performance (265 references).
Similar articles
-
Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity.Science. 2003 Mar 14;299(5613):1698-701. doi: 10.1126/science.1082332. Science. 2003. PMID: 12637736
-
Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures.Acc Chem Res. 2007 Sep;40(9):854-62. doi: 10.1021/ar6000445. Epub 2007 May 26. Acc Chem Res. 2007. PMID: 17530736
-
Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D.Nanoscale. 2011 Apr;3(4):1731-40. doi: 10.1039/c0nr00731e. Epub 2011 Feb 16. Nanoscale. 2011. PMID: 21327256
-
Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds.Small. 2011 May 23;7(10):1288-308. doi: 10.1002/smll.201002350. Epub 2011 Apr 20. Small. 2011. PMID: 21506267 Review.
-
Oriented nanostructures for energy conversion and storage.ChemSusChem. 2008;1(8-9):676-97. doi: 10.1002/cssc.200800087. ChemSusChem. 2008. PMID: 18693284 Review.
Cited by
-
Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review.RSC Adv. 2024 Mar 20;14(14):9406-9439. doi: 10.1039/d3ra08312h. eCollection 2024 Mar 20. RSC Adv. 2024. PMID: 38516158 Free PMC article. Review.
-
Synergistic effect of hierarchical nanopores in Co-doped cobalt oxide 3D flowers for electrochemical energy storage.RSC Adv. 2020 Dec 9;10(71):43825-43833. doi: 10.1039/d0ra08319d. eCollection 2020 Nov 27. RSC Adv. 2020. PMID: 35519709 Free PMC article.
-
Performance metrics and mechanistic considerations for the development of 3D batteries.Nat Rev Chem. 2025 Feb;9(2):118-133. doi: 10.1038/s41570-024-00659-2. Epub 2025 Jan 2. Nat Rev Chem. 2025. PMID: 39743549 Review.
-
Reinforced PHA/CNC Biocomposites in Extrusion-Based Additive Manufacturing.ACS Omega. 2025 Aug 5;10(32):36613-36630. doi: 10.1021/acsomega.5c05743. eCollection 2025 Aug 19. ACS Omega. 2025. PMID: 40852303 Free PMC article.
-
Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.Adv Sci (Weinh). 2016 Apr 15;3(9):1600049. doi: 10.1002/advs.201600049. eCollection 2016 Sep. Adv Sci (Weinh). 2016. PMID: 27711259 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources