Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:(191):33-46.
doi: 10.1007/978-3-540-68964-5_3.

Genetic mouse models of the NO receptor 'soluble' guanylyl cyclases

Affiliations
Review

Genetic mouse models of the NO receptor 'soluble' guanylyl cyclases

Evanthia Mergia et al. Handb Exp Pharmacol. 2009.

Abstract

The NO/cGMP signalling cascade has an important role in smooth muscle relaxation, inhibition of platelet aggregation and neuronal transmission. Although the function of the main NO receptor GC (NO-GC) is well established, the particular tasks of the NO receptor isoforms (NO-GC1 and NO-GC2) are unclear and NO targets other than NO-GC have been postulated. Mice deficient in either NO receptor isoform or with a complete lack of NO-GC are now available and allow new insights in NO/cGMP signalling. The first reports about the KO strains show that, outside the neuronal system, the NO-GC isoforms can substitute for each other, and that amazingly low cGMP increases are sufficient to induce smooth muscle relaxation. In the neuronal system, however, the NO-GC isoforms obviously serve distinct functions as both isoforms are required for long term potentiation. Analysis of the complete NO-GC KO provides evidence that the vasorelaxing and platelet-inhibiting effects of NO are solely mediated by NO-GC. Thus, NO-GC appears to be the only NO receptor in these two systems.

PubMed Disclaimer

LinkOut - more resources