Drosophila mutants in phospholipid signaling have reduced olfactory responses as adults and larvae
- PMID: 19089787
- DOI: 10.1080/01677060802372494
Drosophila mutants in phospholipid signaling have reduced olfactory responses as adults and larvae
Abstract
In this paper, we show that mutants in the gene stambhA (stmA), which encodes a putative phosphatidylinositol 4,5 bisphosphate-diacylglycerol lipase, exhibit a significant reduction in the amplitudes of odor-evoked responses recorded from the antennal surface of adult Drosophila. This lends support to previously published findings that olfactory transduction in Drosophila requires a phospholipid intermediate. Mutations in stmA also affect the olfactory behavior response of larvae. Moreover, there is a requirement for G(q)alpha and phospholipase Cbeta function in larval olfaction. The results suggest that larval olfactory transduction, like that of the adult, utilizes a phospholipid second messenger, generated by the activation of G(q)alpha and Plcbeta21c, and modulated by the stmA gene product.
Similar articles
-
Reduced odor responses from antennal neurons of G(q)alpha, phospholipase Cbeta, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction.J Neurosci. 2008 Apr 30;28(18):4745-55. doi: 10.1523/JNEUROSCI.5306-07.2008. J Neurosci. 2008. PMID: 18448651 Free PMC article.
-
EGFR signaling in the brain is necessary for olfactory learning in Drosophila larvae.Learn Mem. 2013 Mar 19;20(4):194-200. doi: 10.1101/lm.029934.112. Learn Mem. 2013. PMID: 23512935
-
Mutants in phospholipid signaling attenuate the behavioral response of adult Drosophila to trehalose.Chem Senses. 2010 Oct;35(8):663-73. doi: 10.1093/chemse/bjq055. Epub 2010 Jun 11. Chem Senses. 2010. PMID: 20543015
-
Olfaction in Drosophila: from odor to behavior.Trends Genet. 1996 May;12(5):175-80. doi: 10.1016/0168-9525(96)10015-9. Trends Genet. 1996. PMID: 8984732 Review.
-
Genetic and molecular studies of olfaction in Drosophila.Ciba Found Symp. 1996;200:285-96; discussion 296-301. doi: 10.1002/9780470514948.ch20. Ciba Found Symp. 1996. PMID: 8894304 Review.
Cited by
-
Towards plant-odor-related olfactory neuroethology in Drosophila.Chemoecology. 2010 Jun;20(2):51-61. doi: 10.1007/s00049-009-0033-7. Epub 2009 Dec 20. Chemoecology. 2010. PMID: 20461131 Free PMC article.
-
Subunit contributions to insect olfactory receptor function: channel block and odorant recognition.Chem Senses. 2011 Nov;36(9):781-90. doi: 10.1093/chemse/bjr053. Epub 2011 Jun 15. Chem Senses. 2011. PMID: 21677030 Free PMC article.
-
Tuning Insect Odorant Receptors.Front Cell Neurosci. 2018 Apr 5;12:94. doi: 10.3389/fncel.2018.00094. eCollection 2018. Front Cell Neurosci. 2018. PMID: 29674957 Free PMC article.
-
Comparative Embryology and Transcriptomics of Asellus infernus, an Isopod Crustacean From Sulfidic Groundwater.Evol Dev. 2025 Sep;27(3):e70014. doi: 10.1111/ede.70014. Evol Dev. 2025. PMID: 40746274 Free PMC article.
-
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace.Insects. 2022 Jan 28;13(2):142. doi: 10.3390/insects13020142. Insects. 2022. PMID: 35206716 Free PMC article. Review.