Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep 5;266(25):16730-5.

Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin

Affiliations
  • PMID: 1909331
Free article

Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin

J Parkkinen et al. J Biol Chem. .
Free article

Abstract

The heparin-binding p30 protein amphoterin is proposed to mediate adhesive interactions of the advancing plasma membrane in migrating and differentiating cells. Since the NH2-terminal part of amphoterin is exceptionally rich in lysine residues, we have studied its interactions with plasminogen and tissue plasminogen activator (t-PA). On immunostaining of N18 neuroblastoma cells, amphoterin and t-PA showed a close co-localization in the filopodia of the leading membrane and in the substrate-attached material. In purified systems, both t-PA and plasminogen bound to immobilized amphoterin, and their binding was inhibited by the lysine analogue epsilon-aminocaproic acid. Plasminogen bound to immobilized amphoterin was activated by t-PA, and this resulted in effective degradation of the immobilized amphoterin. Correspondingly, amphoterin-bound t-PA activated plasminogen. In solution amphoterin accelerated t-PA-catalyzed plasminogen activation maximally 46-fold. The results indicate that t-PA and plasminogen form through their lysine-binding sites a complex with amphoterin, which results in acceleration of plasminogen activation and effective degradation of amphoterin. We suggest that local acceleration of t-PA-catalyzed plasminogen activation by amphoterin at the leading membrane enhances the penetration of growing cytoplasmic processes through extracellular materials during cell migration, differentiation and regeneration. The amphoterin-mediated adhesion at the leading membrane may be transient in nature, because the protein also enhances its own breakdown by accelerating t-PA-catalyzed plasminogen activation.

PubMed Disclaimer

Publication types

LinkOut - more resources