Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan 22;113(3):617-27.
doi: 10.1021/jp8073514.

How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations

Affiliations

How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations

Pär Söderhjelm et al. J Phys Chem A. .

Abstract

A new method to accurately estimate the interaction energy between a large molecule and a smaller ligand is presented. The method approximates the electrostatic and induction contributions classically by multipole and polarizability expansions, but uses explicit quantum-mechanical fragment calculations for the remaining (nonclassical) contributions, mainly dispersion and exchange repulsion. Thus, it represents a limit of how accurate a force field can ever become for interaction energies if pairwise additivity of the nonclassical term is assumed (e.g., all general-purpose force fields). The accuracy is tested by considering protein-ligand model systems for which the true MP2/6-31G* interaction energies can be computed. The method is shown to be more accurate than related fragmentation approaches. The remaining error (2-5 and approximately10 kJ/mol for neutral and charged ligands, respectively) can be decreased by including the polarizing effect from surrounding fragments in the quantum-mechanical calculations.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources